Journal of Polymer Research

, 25:218 | Cite as

Preparation of TiO2 incorporated polyacrylonitrile electrospun nanofibers for adsorption of heavy metal ions

  • Mustafa Y. Haddad
  • Hamad F. AlharbiEmail author
  • Mohammad R. Karim
  • Muhammed O. Aijaz
  • Nabeel H. Alharthi


This paper describes the adsorption of lead and cadmium ions from an aqueous solution using a composite of titanium dioxide (TiO2)-incorporated polyacrylonitrile (PAN) electrospun nanofibers. Adsorption capacities and the mechanical response of the PAN/TiO2 composite electrospun nanofibers are investigated at different weight percentages of TiO2 (0.5, 1.0, 2.0, and 5.0 wt.%). The adsorption capacities of the composite PAN/TiO2 (2.0 and 5.0 wt.%) for Pb(II) and Cd(II) are remarkably increased by approximately 114 and 47%, respectively, compared to those of pure PAN electrospun nanofibers. Moreover, the adsorption of Pb(II) and Cd(II) by PAN/TiO2 nanofibers reaches an equilibrium within 60 min, and the process can be described using the nonlinear pseudo-second-order kinetic model. The adsorption isotherm study can be represented by the Langmuir model, which suggests the homogeneous distribution of monolayer adsorptive sites on the composite nanofiber surface. Furthermore, the ultimate tensile strength and ductility of all nanofiber membranes are measured through a uniaxial tension test. Mechanical tests reveal a reduction in the tensile strength of the PAN/TiO2 composite nanofibers with increase in TiO2 amount due to the possible formation of agglomerates and voids in the nanofiber structure.


Polyacrylonitrile Titanium oxide Mechanical properties Adsorption Lead Cadmium 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group no. RGP-1438-035.


  1. 1.
    Mara DD (2003) Water, sanitation and hygiene for the health of developing nations. Public Health 117(6):452–456CrossRefGoogle Scholar
  2. 2.
    Johnson DM, Hokanson DR, Zhang Q, Czupinski KD, Tang J (2008) Feasibility of water purification technology in rural areas of developing countries. J Environ Manag 88(3):416–427CrossRefGoogle Scholar
  3. 3.
    Meena AK, Kadirvelu K, Mishraa GK, Rajagopal C, Nagar PN (2008) Adsorption of Pb(II) and cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater 150(3):619–625. CrossRefPubMedGoogle Scholar
  4. 4.
    Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36(1):169–182. CrossRefGoogle Scholar
  5. 5.
    Jaishankar M, Tseten T, Anbalagan N, Mathew Blessy B, Beeregowda Krishnamurthy N (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. CrossRefGoogle Scholar
  7. 7.
    Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164. CrossRefGoogle Scholar
  8. 8.
    Dinh V-P, Le N-C, Tuyen LA, Hung NQ, Nguyen V-D, Nguyen N-T (2018) Insight into adsorption mechanism of lead(II) from aqueous solution by chitosan loaded MnO2 nanoparticles. Mater Chem Phys 207:294–302. CrossRefGoogle Scholar
  9. 9.
    Ravindranath R, Roy P, Periasamy AP, Chen Y-W, Liang C-T, Chang H-T (2017) Fe 2 O 3/Al 2 O 3 microboxes for efficient removal of heavy metal ions. New J Chem 41(15):7751–7757CrossRefGoogle Scholar
  10. 10.
    Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609CrossRefGoogle Scholar
  11. 11.
    Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792CrossRefGoogle Scholar
  12. 12.
    de León CC, Ríos MS, Alamo NF, Berriel CH, Robles OJ (2016) Biosorption of lead (II) and chromium with zea mays rachis in aqueous solutions: characterization studies. Afinidad 73:574Google Scholar
  13. 13.
    Wu M, Yan X, Liu K, Deng L (2017) Application of activated biomaterial in the rapid start-up and stable operation of biological processes for removal cadmium from effluent. Water Air Soil Pollut 228(1):31CrossRefGoogle Scholar
  14. 14.
    Botes M, Eugene Cloete T (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81. CrossRefPubMedGoogle Scholar
  15. 15.
    Suja PS, Reshmi CR, Sagitha P, Sujith A (2017) Electrospun Nanofibrous membranes for water purification. Polym Rev 57(3):467–504. CrossRefGoogle Scholar
  16. 16.
    Zhang J, Xue Q, Pan X, Jin Y, Lu W, Ding D, Guo Q (2017) Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem Eng J 307:643–649CrossRefGoogle Scholar
  17. 17.
    Kaur S, Sundarrajan S, Rana D, Matsuura T, Ramakrishna S (2012) Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J Membr Sci 392:101–111CrossRefGoogle Scholar
  18. 18.
    Ren J, McCutcheon JR (2015) Polyacrylonitrile supported thin film composite hollow fiber membranes for forward osmosis. Desalination 372:67–74CrossRefGoogle Scholar
  19. 19.
    Nataraj S, Yang K, Aminabhavi T (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37(3):487–513CrossRefGoogle Scholar
  20. 20.
    Zhang XF, Yang SJ, Yu B, Tan QL, Zhang XY, Cong HL (2018) Advanced modified Polyacrylonitrile membrane with enhanced adsorption property for heavy metal ions. Sci Rep 8:9. CrossRefGoogle Scholar
  21. 21.
    Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of Aminated electrospun Polyacrylonitrile nanofiber Mats for heavy metal ion removal. ACS Appl Mater Interfaces 2(12):3619–3627. CrossRefPubMedGoogle Scholar
  22. 22.
    Chaúque EF, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC (2016) Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of cd and Cr ions from water effluents. Appl Surf Sci 369:19–28CrossRefGoogle Scholar
  23. 23.
    Makaremi M, Lim CX, Pasbakhsh P, Lee SM, Goh KL, Chang H, Chan ES (2016) Electrospun functionalized polyacrylonitrile–chitosan bi-layer membranes for water filtration applications. RSC Adv 6(59):53882–53893. CrossRefGoogle Scholar
  24. 24.
    Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171CrossRefGoogle Scholar
  25. 25.
    Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):347CrossRefGoogle Scholar
  26. 26.
    Dastbaz A, Keshtkar AR (2014) Adsorption of Th 4+, U 6+, cd 2+, and Ni 2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Appl Surf Sci 293:336–344CrossRefGoogle Scholar
  27. 27.
    Najafabadi HH, Irani M, Rad LR, Haratameh AH, Haririan I (2015) Removal of cu 2+, Pb 2+ and Cr 6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5(21):16532–16539CrossRefGoogle Scholar
  28. 28.
    Gebru KA, Das C (2017) Removal of Pb (II) and cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J Water Process Eng 16:1–13. CrossRefGoogle Scholar
  29. 29.
    Parlayıcı Ş, Yar A, Avcı A, Pehlivan E (2016) Removal of hexavalent chromium using polyacrylonitrile/titanium dioxide nanofiber membrane. Desalin Water Treat 57(34):16177–16183CrossRefGoogle Scholar
  30. 30.
    Mohamed A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A (2017) Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interface Sci 505:682–691. CrossRefPubMedGoogle Scholar
  31. 31.
    Yar A, Haspulat B, Üstün T, Eskizeybek V, Avcı A, Kamış H, Achour S (2017) Electrospun TiO 2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Adv 7(47):29806–29814CrossRefGoogle Scholar
  32. 32.
    Prahsarn C, Klinsukhon W, Roungpaisan N (2011) Electrospinning of PAN/DMF/H2O containing TiO2 and photocatalytic activity of their webs. Mater Lett 65(15–16):2498–2501CrossRefGoogle Scholar
  33. 33.
    Yu D, Bai J, Liang H, Ma T, Li C (2016) AgI-modified TiO2 supported by PAN nanofibers: a heterostructured composite with enhanced visible-light catalytic activity in degrading MO. Dyes Pigments 133:51–59. CrossRefGoogle Scholar
  34. 34.
    Moradi G, Zinadini S, Rajabi L, Dadari S (2018) Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl Surf Sci 427:830–842. CrossRefGoogle Scholar
  35. 35.
    Fagan R, McCormack DE, Hinder S, Pillai SC (2016) Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping. Mater Des 96:44–53. CrossRefGoogle Scholar
  36. 36.
    Shang X, Li B, Li C, Wang X, Zhang T, Jiang S (2013) Preparation and enhanced visible light catalytic activity of TiO2 sensitized with Benzimidazolone yellow H3G. Dyes Pigments 98(3):358–366. CrossRefGoogle Scholar
  37. 37.
    Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42(5):357–361Google Scholar
  38. 38.
    Hansen LM, Smith DJ, Reneker DH, Kataphinan W (2005) Water absorption and mechanical properties of electrospun structured hydrogels. J Appl Polym Sci 95:427–434. CrossRefGoogle Scholar
  39. 39.
    Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer 44:1287–1294. CrossRefGoogle Scholar
  40. 40.
    Wei X, Xia Z, Wong SC, Baji A (2009) Modelling of mechanical properties of electrospun nanofibre network. Int J Exp Comput Biomech 1:45. CrossRefGoogle Scholar
  41. 41.
    Mohammadzadehmoghadam S, Dong Y, Jeffery Davies I (2015) Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. J Polym Sci B Polym Phys 53:1171–1212. CrossRefGoogle Scholar
  42. 42.
    Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100(2):1588–1593. CrossRefGoogle Scholar
  43. 43.
    Kizildag N, Ucar N, Onen A (2018) Nanocomposite polyacrylonitrile filaments with titanium dioxide and silver nanoparticles for multifunctionality. J Ind Text 47(7):1716–1738. CrossRefGoogle Scholar
  44. 44.
    Selvin TP, Kuruvilla J, Sabu T (2004) Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater Lett 58(3):281–289. CrossRefGoogle Scholar
  45. 45.
    Lalhmunsiama LSM, Tiwari D (2013) Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(II) and lead(II). Chem Eng J 225:128–137. CrossRefGoogle Scholar
  46. 46.
    Denizli A, Say R, Patır S, Arıca MY (2000) Adsorption of heavy metal ions onto ethylene diamine-derived and Cibacron blue F3GA-incorporated microporous poly(2-hydroxyethyl methacrylate) membranes. React Funct Polym 43(1):17–24. CrossRefGoogle Scholar
  47. 47.
    Huang F, Xu Y, Liao S, Yang D, Hsieh Y-L, Wei Q (2013) Preparation of Amidoxime Polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials 6(3):969–980CrossRefGoogle Scholar
  48. 48.
    Jitjaicham S, Kampalanonwat P, Supaphol P (2013) Metal adsorption behavior of 2,4-dinitrophenyl hydrazine modified polyacrylonitrile nanofibers. Express Polym Lett 7(110):832–841. CrossRefGoogle Scholar
  49. 49.
    Zhao R, Li X, Sun B, Shen M, Tan X, Ding Y, Jiang Z, Wang C (2015) Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem Eng J 268:290–299. CrossRefGoogle Scholar
  50. 50.
    Yang R, Aubrecht KB, Ma H, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 55(5):1167–1176. CrossRefGoogle Scholar
  51. 51.
    Lagergren S (1898) Zur théorie der sogenannten adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4):1–39Google Scholar
  52. 52.
    Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76(2):183–191. CrossRefGoogle Scholar
  53. 53.
    Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124. CrossRefGoogle Scholar
  54. 54.
    Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18(12):1501–1507. CrossRefGoogle Scholar
  55. 55.
    Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. CrossRefGoogle Scholar
  56. 56.
    Hu Q, Wang Q, Feng C, Zhang Z, Lei Z, Shimizu K (2018) Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J Mol Liq 254:20–25. CrossRefGoogle Scholar
  57. 57.
    Rodrigues AE, Silva CM (2016) What’s wrong with Lagergreen pseudo first order model for adsorption kinetics? Chem Eng J 306:1138–1142. CrossRefGoogle Scholar
  58. 58.
    Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295CrossRefGoogle Scholar
  59. 59.
    Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–470Google Scholar
  60. 60.
    Helfferich FG (1985) Principles of adsorption & adsorption processes, by D. M. Ruthven, John Wiley & Sons, 1984, xxiv + 433 pp. AICHE J 31(3):523–524. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.National Center for Advanced Materials TechnologyKing Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia
  2. 2.Mechanical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Center of Excellence for Research in Engineering MaterialsKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations