Journal of Polymer Research

, 25:216 | Cite as

Morphology rearrangement of PEO and PG blocks of amphiphilic copolymer particles in solution affected by FeCl3/acidified water addition

  • Emi Haladjova
  • Pavletta Shestakova
  • Christo B. Tsvetanov
  • Christo P. NovakovEmail author


The present contribution describes the preparation of nanosized aggregates by dissolving diblock copolymers consisting of hydrophobic polystyrene (PS) with randomly distributed short diene (D) moieties and hydrophilic polyether (polyethylene oxide (PEO) or polyglycidol (PG)) blocks in selective solvents. Inducing structural and/or size changes of the aggregates by addition of FeCl3/acidified H2O to the system is experimented. Dynamic light scattering (DLS) and size exclusion chromatography (SEC) measurements reveal resizing of the particles whilst adding FeCl3/acidified H2O. Further the structure and size of P(SD-EO/G) block copolymer corе-shell particles are determined by Diffusion Ordered NMR Spectroscopy (DOSY) which indicates a partial reversal of the core-shell structure upon the addition of FeCl3/acidified H2O. Transmission electron microscopy provides a more detailed insight on the morphology, shape and size distribution of the aggregates. For comparison, the change in the particle size under identical conditions for species of preliminary stabilized core-shell morphology is monitored as well.


Amphiphilic block copolymers Hydrophilic poly(ethylene oxide)/polyglycidol block Acidifying addition Morphology rearrangement 


  1. 1.
    Hillmyer MA (2005) Nanoporous materials from block copolymer precursors. Adv Polym Sci 190:137–181CrossRefGoogle Scholar
  2. 2.
    Olson DA, Chen L, Hillmyer MA (2007) Templating nanoporous polymers with ordered block copolymers. Chem Mater 20:869–890CrossRefGoogle Scholar
  3. 3.
    Mansky P, Harrison CK, Chaikin PM, Register RA, Yao N (1996) Nanolithographic templates from diblock copolymer thin films. Appl Phys Lett 68:2586–2588CrossRefGoogle Scholar
  4. 4.
    Lee JS, Hirao A, Nakahama S (1988) Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules 21:274–276CrossRefGoogle Scholar
  5. 5.
    Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford CM, Huang E, Bal M, Tuominen M, Hawker CJ, Russell TP (2000) Nanoscopic templates from oriented block copolymer films. Adv Mater 12:789–791CrossRefGoogle Scholar
  6. 6.
    Jeong U, Kim HC, Rodriguez RL, Tsai IY, Stafford CM, Kim JK, Hawker CJ, Russell TP (2002) Asymmetric block copolymers with homopolymers: routes to multiple length scale nanostructures. Adv Mater 14:274–276CrossRefGoogle Scholar
  7. 7.
    Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ (2006) Defect-free nanoporous thin films from ABC triblock copolymers. J Am Chem Soc 128:7622–7629CrossRefGoogle Scholar
  8. 8.
    Olayo-Valles R, Lund MS, Leghton C, Hillmyer MA (2004) Large area nanolithographic templates by selective etching of chemically stained block copolymer thin films. J Mater Chem 14:2729–2731CrossRefGoogle Scholar
  9. 9.
    Leiston-Belanger JM, Russell TP, Drockenmuller E, Hawker CJ (2005) A thermal and Manufacturable approach to stabilized Diblock copolymer templates. Macromolecules 38:7676–7683CrossRefGoogle Scholar
  10. 10.
    Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA (2002) Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J Am Chem Soc 124:12761–12773CrossRefGoogle Scholar
  11. 11.
    Rzayev J, Hillmyer MA (2004) Nanoporous polystyrene containing hydrophilic pores from an ABC triblock copolymer precursor. Macromolecules 38:3–5CrossRefGoogle Scholar
  12. 12.
    Mao H, Hillmyer MA (2005) Nanoporous polystyrene by chemical etching of poly(ethylene oxide) from ordered block copolymers. Macromolecules 38:4038–4039CrossRefGoogle Scholar
  13. 13.
    Boudouris BW, Frisbie CD, Hillmyer MA (2008) Nanoporous poly(3-alkylthiophene) thin films generated from block copolymer templates. Macromolecules 41:67–75CrossRefGoogle Scholar
  14. 14.
    Pitet LM, Amendt MA, Hillmyer MA (2010) Nanoporous linear polyethylene from a block polymer precursor. J Am Chem Soc 132:8230–8231CrossRefGoogle Scholar
  15. 15.
    McGary Jr CW (1960) Degradation of poly(ethylene oxide). J Polym Sci 46:51–57CrossRefGoogle Scholar
  16. 16.
    Szymanowski J, Kusz P, Dziwiński E (1988) Chemical degradation and analysis of polyoxyethylene glycols and ethylene oxide-α-butylene oxide block copolymers. J Chromatogr A 455:131–141CrossRefGoogle Scholar
  17. 17.
    Szymanowski J, Kusz P, Dziwiński E, Latocha C (1988) Degradation and analysis of polyoxyethylene mono-alkyl ethers in the presence of acetyl chloride. J Chromatogr A 455:119–129CrossRefGoogle Scholar
  18. 18.
    Szymanowski J, Kusz P, Dziwiński E, Szewczyk H, Pyżalski K (1989) Degradation and analysis of polyoxyethylene monoalkyl ethers in the presence of acetyl chloride and ferric chloride. J Chromatogr A 469:197–208CrossRefGoogle Scholar
  19. 19.
    Morlat S, Gardette JL (2003) Phototransformation of water-soluble polymers. Part II: photooxidation of poly(ethylene oxide) in aqueous solution. Polymer 44:7891–7897CrossRefGoogle Scholar
  20. 20.
    Glassner M, Blinco JP, Barner-Kowollik C (2011) Formation of nanoporous materials via mild retro-Diels–Alder chemistry. Polym Chem 2:83–87CrossRefGoogle Scholar
  21. 21.
    Pippa N, Kaditi E, St P, Demetzos C (2013) PEO-b-PCL: DPPC chimeric nanocarriers: self – assembly aspects in aqueous and biological media and drug incorporation. Soft Matter 9:4073–4082CrossRefGoogle Scholar
  22. 22.
    Satoh K, Poelma JE, Campos LM, Stahla B, Hawker CJ (2012) A facile synthesis of clickable and acid-cleavable PEO for acid-degradable block copolymers. Polym Chem 3:1890–1898CrossRefGoogle Scholar
  23. 23.
    Tang CB, Sivanandan K, Stahl BC, Fredrickson GH, Kramer EJ, Hawker CJ (2010) Multiple nanoscale templates by orthogonal degradation of a supramolecular block copolymer lithographic system. ACS Nаno 4:285–291CrossRefGoogle Scholar
  24. 24.
    Kang M, Moon B (2009) Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films. Macromolecules 42:455–458CrossRefGoogle Scholar
  25. 25.
    Ryu JH, Park S, Kim B, Klaikherd A, Russell TP, Thayumanavan S (2009) Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. J Am Chem Soc 131:9870–9871CrossRefGoogle Scholar
  26. 26.
    Zhang Q, Aleksanian S, Man Noh S, Oh JK (2013) Thiol-responsive block copolymer nanocarriers exhibiting tunable release with morphology changes. Polym Chem 4:351–359CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Ko NR, Oh JK (2012) Modulated morphologies and tunable thiol-responsive shedding of aqueous block copolymer aggregates. RSC Adv 2:8079–8086CrossRefGoogle Scholar
  28. 28.
    Atkinson JL, Vyazovkin S (2011) Non-oxidative thermal tegradation of poly(glycidol), poly(glycidol)-g-L-lactide, and poly(glycidol)-g-glycolide. Macromol Chem Phys 212:2103–2113CrossRefGoogle Scholar
  29. 29.
    Hans M, Keul H, Moeller M (2008) Poly(ether-ester) conjugates with enhanced degradation. Biomacromolecules 9:2954–2962CrossRefGoogle Scholar
  30. 30.
    Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE (2006) Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709CrossRefGoogle Scholar
  31. 31.
    Klajnert B, Walach W, Bryszewska M, Dworak A, Shcharbin D (2006) Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells. Cell Biol Int 30:248–252CrossRefGoogle Scholar
  32. 32.
    Dworak A, Lipowska D, Szweda D, Suwinski J, Trzebicka B, Szweda R (2015) Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and "click" chemistry. Nanoscale 7:16823–16833CrossRefGoogle Scholar
  33. 33.
    Lele BS, Kulkarni MG (1998) Single step room temperature oxidation of poly(ethylene glycol) to poly(oxyethylene)-dicarboxylic acid. J Appl Polym Sci 70:883–890CrossRefGoogle Scholar
  34. 34.
    Fitton A, Hill J, Jane D, Miller R (1987) Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis 1987:1140–1142CrossRefGoogle Scholar
  35. 35.
    Novakov CP, Haladjova E, Dishovsky N, Hirao A, Meier W, Tsvetanov CB (2010) Stabilized amphiphilic poly (styrene-co-diene)-b-poly (ethylene oxide) aggregates. Colloide Polym Sci 288:795–807CrossRefGoogle Scholar
  36. 36.
    Haladjova E, Dishovsky N, Meier W, Tsvetanov CB, Novakov CP (2011) Synthesis of poly (styrene-co-diene)-block-polyglycidol. Self-association and stabilization of aggregates. Soft Matter 7:9459–9467CrossRefGoogle Scholar
  37. 37.
    Haladjova E, Dyshovsky N, Tsvetanov CB, Novakov CP (2010) Stabilized poly(styrene-co-diene)-b-polyether based nano-and microsized particles of tailored morphology. J Univ Chem Technol Met 45:255–260Google Scholar
  38. 38.
    Utrata-Wesołek A, Trzcińska R, Galbas K, Trzebicka B, Dworak A (2011) Photodegradation of polyglycidol in aqueous solutions exposed to UV irradiation. Polym Degrad Stab 96:907–918CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Emi Haladjova
    • 1
  • Pavletta Shestakova
    • 2
  • Christo B. Tsvetanov
    • 1
  • Christo P. Novakov
    • 1
    Email author
  1. 1.Institute of PolymersBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations