Advertisement

Journal of Polymer Research

, 25:206 | Cite as

Modifying the thermal and mechanical properties of poly(lactic acid) by adding lithium trifluoromethanesulfonate

  • Shota Tomie
  • Naoya Tsugawa
  • Masayuki Yamaguchi
ORIGINAL PAPER
  • 82 Downloads

Abstract

The effect of the addition of lithium trifluoromethanesulfonate (LiCF3SO3) on the linear viscoelastic properties, crystallization behavior, and mechanical properties of poly(lactic acid) (PLA) was studied. The glass transition temperature (Tg) was enhanced by adding LiCF3SO3, without any loss of transparency of the PLA. This was attributed to the ion-dipole interaction between the lithium cation and oxygen atom in the PLA carbonyl group. The interaction weakened at higher temperature. Consequently, the rheological terminal region was clearly detected, which suggested that the system possessed good melt-processability. The Young’s modulus and yield stress at room temperature were also enhanced by the addition of LiCF3SO3, although the toughness was reduced due to the brittle failure. Finally, the presence of LiCF3SO3 retarded the crystallization of PLA, because the segmental motion of the PLA chains was reduced.

Keywords

Poly(lactic acid) Rheology Crystallization Glass transition temperature 

Notes

Acknowledgements

A part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B) Grant Number 16H04201.

References

  1. 1.
    Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  3. 3.
    Jimenez J, Peltzer M, Ruseckaite R (2014) Poly(lactic acid) science and technology: processing, properties, additives, and applications. Royal Society of Chemistry, OxfordshireCrossRefGoogle Scholar
  4. 4.
    Yamaguchi M (2016) Manufacturing of high performance biomass-based polyesters by rheological approach. In: Thakur VK, Thakur MK (eds) Handbook of composite from renewable materials. Wiley, New York Chap. 2Google Scholar
  5. 5.
    Lorenzo MRD, Androsch R (2018) Synthesis, structure and properties of poly(lactic acid). SpringerGoogle Scholar
  6. 6.
    Dubey SP, Thakur VK, Krishnaswamy S, Abhyankar HA, Marchante V, Brighton JL (2017) Progress in environmental-friendly polymer nanocomposite material from PLA: synthesis, processing and applications. Vacuum 146:655–663CrossRefGoogle Scholar
  7. 7.
    Krepsztul JW, Rydzkowski T, Borowski G, Szczypinski M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23:383–395CrossRefGoogle Scholar
  8. 8.
    Madhumitha G, Fowsiya J, Roopan SM, Thakur VK (2018) Recent advances in starch–clay nanocomposites. Int J Polym Anal Charact 23:331–345CrossRefGoogle Scholar
  9. 9.
    Dorgan J, Lehermeir H, Mang M (2000) Thermal and rheological properties of commercial grade poly(lactic acid)s. J Polym Environ 8:1–9CrossRefGoogle Scholar
  10. 10.
    Huang T, Miura M, Nobukawa S, Yamaguchi M (2014) Crystallization behavior and dynamic mechanical properties of poly(L-lactic acid) with poly(ethylene glycol) terminated by benzoate. J Polym Environment 22:183–189CrossRefGoogle Scholar
  11. 11.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  12. 12.
    Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347CrossRefGoogle Scholar
  13. 13.
    Liao R, Yang B, Yu W, Zou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRefGoogle Scholar
  14. 14.
    Wu J, Zou X, Jing B, Dai W (2015) Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polym Eng Sci 55:1104–1112CrossRefGoogle Scholar
  15. 15.
    Zou GX, Jiao QW, Zhang X, Zhao CX, Li JC (2015) Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J Appl Polym Sci 132:41367CrossRefGoogle Scholar
  16. 16.
    Sheth M, Kumar RA, Dave V, Gross RA, MaCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505.2009CrossRefGoogle Scholar
  17. 17.
    Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M (2009) Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J 45:2304–2312CrossRefGoogle Scholar
  18. 18.
    Hassouna F, Raquez JM, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) Grafting of poly (ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144CrossRefGoogle Scholar
  19. 19.
    Gedde UW (1995) Polymer physics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. 20.
    Bicerano J (2011) Glass transition. In: Bailey J (ed) Properties and behavior of polymers. Wiley, HobokenGoogle Scholar
  21. 21.
    Mitomo M, Kaneda A, Quynh TM, Nagasawa N, Yoshii F (2005) Improvement of heat stability of poly(L-lactic acid) by radiation-induced crosslinking. Polymer 46:4695–4703CrossRefGoogle Scholar
  22. 22.
    Yang LS, Wu HZ, Yang W, Yang BM (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test 27:957–963CrossRefGoogle Scholar
  23. 23.
    Rahmat M, Ghasemi I, Karrabi M, Azizi H, Zandi M, Riahinezhad M (2015) Silane crosslinking of poly(lactic acid): the effect of simultaneous hydrolytic degradation. Express Polym Lett 9:1133–1141CrossRefGoogle Scholar
  24. 24.
    Eisenberg A, Kim JS (1998) Introduction to ionomers. Wiley, New YorkGoogle Scholar
  25. 25.
    Vanhoorne P, Jerome R, Teyssie P, Laupretre F (1994) Direct NMR evidence for a local restriction in the segmental chain mobility of a model ionomer. Macromololecules 27:2548–2552CrossRefGoogle Scholar
  26. 26.
    Ro JA, Huang JS, Weiss AR (2008) Synthesis and thermal properties of telechelic poly(lactic acid) ionomers. Polymer 49:422–431CrossRefGoogle Scholar
  27. 27.
    Miyagawa A, Ayerdurai V, Nobukawa S, Yamaguchi M (2016) Viscoelastic properties of poly(methyl methacrylate) with high glass transition temperature by lithium salt addition. J Polym Sci Polym Phys Ed 54:2388–2394CrossRefGoogle Scholar
  28. 28.
    Ito A, Phulkerd P, Ayerdurai V, Soga M, Courtoux A, Miyagawa A, Yamaguchi M (2018) Effects of residual solvent on glass transition temperature of poly(methyl methacrylate). Polym J 50:857–863. CrossRefGoogle Scholar
  29. 29.
    Tsugawa N, Ito A, Yamaguchi M (2018) Effect of lithium salt addition on the structure and optical properties of PMMA/PVB blends. Polymer 146:242–248CrossRefGoogle Scholar
  30. 30.
    Huang T, Miura M, Nobukawa S, Yamaguchi M (2015) Chain packing and its anomalous effect on mechanical toughness for poly(lactic acid). Biomacromolecules 16:1660–1666CrossRefPubMedGoogle Scholar
  31. 31.
    Huang T, Yamaguchi M (2017) Effect of cooling conditions on the mechanical properties of crystalline poly(lactic acid). J Appl Polym Sci 134:44960Google Scholar
  32. 32.
    Ito A, Ayerdurai V, Miyagawa A, Matsumoto A, Okada H, Courtoux A, Yamaguchi M (2018) Effects of residual solvent on glass transition temperature of poly(methyl methacrylate). Nihon Reoroji Gakkaishi 46:117–121CrossRefGoogle Scholar
  33. 33.
    Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Shota Tomie
    • 1
  • Naoya Tsugawa
    • 1
    • 2
  • Masayuki Yamaguchi
    • 1
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.TOSOH Analysis and Research Center Co., Ltd.YokkaichiJapan

Personalised recommendations