Journal of Polymer Research

, 25:207 | Cite as

Fabrication and microwave absorption properties of size-controlled polymer/Fe3O4hybrid microsphere based on aggregation-induced emission active polyarylene ether nitrile

  • Xiaohui Sang
  • Kui Li
  • Pan Wang
  • Kun Jia
  • Xuefeng LeiEmail author
  • Xiaobo LiuEmail author


The article fabricated novel polymer/magnetic hybrid microspheres via solvothermal method by using ferroferric oxide (Fe3O4) and aggregation-induced emission (AIE) active polyarylene ether nitrile (PEN) as building components. The PEN was copolymerized through phenolphthalin and AIE-gen (4, 4′-(1, 2-di (4-hydroxyphenyl)-1, 2-diyl) diphenol), wherein AIE-gen endowed the copolymer with AIE effect so that the copolymer could aggregate correspondingly in different solvent/nonsolvent systems and produce fluorescence enhanced. In these experiments, the diameter of Fe3O4/PEN hybrid microspheres was controlled by the volume proportion of nonsolvent (ethylene glycol (EG)) and solvent (N-methyl pyrrolidone (NMP)) in preparation process based on the aggregation behavior of AIE active PEN. Moreover, the resulted hybrid microspheres also had excellent magnetic and electromagnetic absorption performance. Specifically, they all exhibited a strong reflection loss peak both in the low and high frequency range. Meanwhile, with the change of coating thickness, these hybrid microspheres had a wide wave-absorbing frequency from 5 GHz to16 GHz. The results supported that the hybrid microspheres integrated with magnetism and AIE property will have a wide application in the preparation and improvement of size-controlled inorganic organic nanocomposites.


Magnetic materials Fe3O4/PEN hybrid microspheres AIE property Microwave absorption 



The authors gratefully thank the financial support from the National Natural Science Foundation of China (Project 51403029), the Fundamental Research Funds for the Central Universities (ZYGX2016J040) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry (LXHG5003).

Supplementary material

10965_2018_1590_MOESM1_ESM.pdf (216 kb)
ESM 1 (PDF 216 kb)


  1. 1.
    Pan H, Cheng X, Gong C, Yu L, Zhang J, Zhang Z (2013) Preparation of (FexNi1−x)4N (0.5 ≤ x ≤ 0.8) compounds and evaluation of their magnetic and microwave absorbing properties. J Appl Phys 113(11):113906CrossRefGoogle Scholar
  2. 2.
    Tong L, Pu Z, Huang X, Liu X (2014) X, Ku-band microwave-absorption properties of polyarylene ether nitriles terminated with phthalonitrile/Fe3O4 hybrid submicron spheres. Mater Sci Eng B-adv 184:98–104CrossRefGoogle Scholar
  3. 3.
    Wei J, Yang X, Zhan Y, Meng F, Zhao R, Zhong J, Liu XB (2012) Magnetic and electromagnetic properties of ferrocenyl organic metal magnetic resin. Mater Lett 67(1):135–138CrossRefGoogle Scholar
  4. 4.
    Jia K, Zhao R, Zhong J, Liu XB (2010) Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J Magn Magn Mater 322(15):2167–2171CrossRefGoogle Scholar
  5. 5.
    Liu L, Duan Y, Ma L, Liu S, Yu Z (2010) Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl Surf Sci 257(3):842–846CrossRefGoogle Scholar
  6. 6.
    Zhao B, Shao G, Fan B, Guo W, Chen Y, Zhang R (2015) Preparation of SnO2-coated Ni microsphere composites with controlled microwave absorption properties. Appl Surf Sci 332:112–120CrossRefGoogle Scholar
  7. 7.
    Yulan Ren CZ, Shen Z, Li C, Chen Y, Gao P, Yang P, Ouyanga Q (2013) Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5:12296–12303CrossRefPubMedGoogle Scholar
  8. 8.
    Ma Z, Meng FB, Zhao R, Zhan YQ, Zhong JC, Liu XB (2012) Preparation and dual microwave-absorption properties of carboxylic poly (arylene ether nitrile)/Fe3O4 hybrid microspheres. J Magn Magn Mater 324(7):1365–1369CrossRefGoogle Scholar
  9. 9.
    Ma Z, Zhao R, Yang X, Wei JJ, Meng FB, Liu XB (2012) Microwave absorption properties of Fe3O4/CuPc hybrid material with cooperative dual nonlinear dielectric/magnetic resonance. Mater Lett 69:30–33CrossRefGoogle Scholar
  10. 10.
    Meng F, Zhao R, Zhan Y, Lei Y, Zhong J, Liu XB (2011) One-step synthesis of Fe-phthalocyanine/Fe3O4 hybrid microspheres. Mater Lett 65(2):264–267CrossRefGoogle Scholar
  11. 11.
    Wei J, Zhan Y, Yang X, Meng F, Ma Z, Zhao R, Zhong J, Zhang JC, Liu XB (2011) One-step preparation of organometal/Fe3O4 hybrid microspheres and their electromagnetic properties. J Magn Magn Mater 323(24):3210–3216CrossRefGoogle Scholar
  12. 12.
    Wei J, Zhao R, Liu XB (2012) Only Ku-band microwave absorption by Fe3O4/ferrocenyl-CuPc hybrid nanospheres. J Magn Magn Mater 324(20):3323–3327CrossRefGoogle Scholar
  13. 13.
    Wei JJ, Zhao R, Zhan YQ, Meng FB, Yang X, Xu MZ, Liu XB (2012) One-step solvothermal syntheses and microwave electromagnetic properties of organic magnetic resin/Fe3O4 hybrid nanospheres. Appl Surf Sci 258(17):6705–6711CrossRefGoogle Scholar
  14. 14.
    Xu MZ, Meng FB, Zhao R, Zhan YQ, Lei Y, Liu XB (2011) Iron phthalocyanine oligomer/Fe3O4 hybrid microspheres and their microwave absorption property. J Magn Magn Mater 323(16):2174–2178CrossRefGoogle Scholar
  15. 15.
    Zhang J, Shi C, Ji T, Wu G, Kou K (2014) Preparation and Microwave Absorbing Characteristics of Multi-Walled Carbon Nanotube/Chiral-Polyaniline Composites. Open J Polym Chem 04(03):62–72CrossRefGoogle Scholar
  16. 16.
    Zhang XF, Dong XL, Huang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP, Lee CG (2006) Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 89(5):053115CrossRefGoogle Scholar
  17. 17.
    Dong SH, Xu MZ, Wei JJ, Yang XL, Liu XB (2014) The preparation and wide frequency microwave absorbing properties of tri-substituted-bisphthalonitrile/Fe3O4 magnetic hybrid microspheres. J Magn Magn Mater 349:15–20CrossRefGoogle Scholar
  18. 18.
    Feng MN, Huang X, Tang HL, Pu ZJ, Liu XB (2013) Dielectric and thermal properties of novel three-component CCTO/MWCNTs/polyarylene ether nitrile composite films. J Mater Sci Mater Electron 24(10):3652–3659CrossRefGoogle Scholar
  19. 19.
    Pu ZJ, Chen L, Long Y, Tong LF, Huang X, Liu XB (2013) Influence of composition on the proton conductivity and mechanical properties of sulfonated poly (aryl ether nitrile) copolymers for proton exchange membranes. J Polym Res 20(11):281CrossRefGoogle Scholar
  20. 20.
    Shen SZ, Pu ZJ, Zheng PL, Liu XB, Jia K (2015) Synthesis and properties of cross-linkable poly (arylene ether nitrile) s containing side propenyl groups. High Perform Polym 28(5):562–569CrossRefGoogle Scholar
  21. 21.
    Huang X, Pu ZJ, Tong LF, Wang ZC, Liu XB (2012) Preparation and dielectric properties of surface modified TiO2/PEN composite films with high thermal stability and flexibility. J Mater Sci Mater Electron 23(12):2089–2097CrossRefGoogle Scholar
  22. 22.
    Zhan Y, Yang X, Guo H, Yang J, Meng F, Liu XB (2012) Cross-linkable nitrile functionalized graphene oxide/poly (arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22(12):5602CrossRefGoogle Scholar
  23. 23.
    Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353CrossRefGoogle Scholar
  24. 24.
    Hu R, Lam JWY, Yu Y, Sung HHY, Williams ID, Yuen MMF, Tang BZ (2013) Facile synthesis of soluble nonlinear polymers with glycogen-like structures and functional properties from “simple” acrylic monomers. Polym Chem 4(1):95–105CrossRefGoogle Scholar
  25. 25.
    Chen G, Li W, Zhou T, Peng Q, Zhai D, Li H, Yuan WZ, Zhang Y, Tang BZ (2015) Conjugation-Induced Rigidity in Twisting Molecules: Filling the Gap Between Aggregation-Caused Quenching and Aggregation-Induced Emission. Adv Mater 27:4496–4501CrossRefPubMedGoogle Scholar
  26. 26.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefPubMedGoogle Scholar
  27. 27.
    Wang P, Jia K, Zhou XF, Guan X, Wang L, Tian Y, Wu CH, Liu XB (2017) Ca(2+) Induced Crosslinking of AIE-Active Polyarylene Ether Nitrile into Fluorescent Polymeric Nanoparticles for Cellular Bioimaging. Macromol Rapid Commun 38(21)CrossRefGoogle Scholar
  28. 28.
    Tang HL, Pu ZJ, Huang X, Wei JJ, Liu XB, Lin ZQ (2014) Novel blue-emitting carboxyl-functionalized poly (arylene ether nitrile) s with excellent thermal and mechanical properties. Polym Chem 5(11):3673CrossRefGoogle Scholar
  29. 29.
    Zheng J, Huang F, Li YJ, Xu TW, Xu H, Jia JH, Ye Q, Gao JR (2015) The aggregation-induced emission enhancement properties of BF2 complex isatin-phenylhydrazone: Synthesis and fluorescence characteristics. Dyes Pigments 113:502–509CrossRefGoogle Scholar
  30. 30.
    Zhang YY, Li HF, Zhang GB, Xu XY, Kong L, Tao XT, Tian YP, Yang JX (2016) Aggregation-induced emission enhancement and mechanofluorochromic properties of α-cyanostilbene functionalized tetraphenyl imidazole derivatives. J Mater Chem C 4(14):2971–2978CrossRefGoogle Scholar
  31. 31.
    Peng DL, Sumiyama K, Hihara T, Yamamuro S (1999) Enhancement of magnetic coercivity and macroscopic quantum tunneling in monodispersed Co/CoO cluster assemblies. Appl Phys Lett 75(24):3856–3858CrossRefGoogle Scholar
  32. 32.
    Frenkel J, Doefman J (1930) Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. Nature 126(3173):274–275CrossRefGoogle Scholar
  33. 33.
    Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314(1):274–280CrossRefPubMedGoogle Scholar
  34. 34.
    Bridger K, Watts J, Chien CL (1988) The dependence of coercivities of ultrafine Fe particles on packing fraction and microstructure. J Appl Phys 63(8):3233–3235CrossRefGoogle Scholar
  35. 35.
    Mercier D, Levy JCS (2000) Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles. Phy Rev B 62:533–544CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Li C, Chen Y, Han Z, Wang H, Wang Z, Geng D, Liu W, Zhang Z (2010) Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl Phys Lett 97(13):133115CrossRefGoogle Scholar
  37. 37.
    Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111(6):061301CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research Branch of Advanced Functional Materials, School of Materials Science and EnergyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.School of Materials Science & Food EngineeringZhongshan Institute of University of Electronic Science and Technology of ChinaZhongshanPeople’s Republic of China

Personalised recommendations