Advertisement

Journal of Polymer Research

, 25:209 | Cite as

In-situ PMMA modified p-cresol resin-nylon 6 polymer blends and evaluation of their hydrophobic and dielectric properties

  • Thiruvengadam Vedamurthy
  • Malathi Murugesan
ORIGINAL PAPER

Abstract

The synthesis of PMMA modified p-Cresol resin-nylon 6 blends by the in-situ polymer blending in various proportion is described. These new polymer blends has been characterized by FT-IR, DSC-TGA, SEM, and screened for the hydrophobic, mechanical and dielectric properties. The blended materials exhibit good thermal stability and increased hydrophobic nature. Compressive stress and the strain study show that the blends have improved mechanical property. The frequency dependent dielectric property of the blend has been lowered. Thus, PMMA modified p-Cresol resin-nylon 6 blends could be used as a potential material for the fabrication of electronic device application.

Keywords

p-cresol resin Nylon 6 PMMA Hydrophobic Dielectric property 

Notes

Acknowledgements

We gratefully acknowledge the Defense Research and Development Organization [DRDO]-INDIA for the financial support [Project. No: ERIP/ER/1203109/M/01/1502]. We also gratefully acknowledge Prof. K. K. Balasubramanian, INSA Senior Scientist, Dept. of Biotechnology, IIT Madras for his kind help and valuable suggestions.

References

  1. 1.
    Drobny JG (2012) Polymers for electricity and electronics. Materials, properties, and applications. Wiley, New JerseyCrossRefGoogle Scholar
  2. 2.
    Nelson JK (2010) Dielectric polymer nanocomposites. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Maier G (2004). IEEE Electr Insul Mag 20(2):6CrossRefGoogle Scholar
  4. 4.
    Maier G (2004). IEEE Electr Insul Mag 20(3):6CrossRefGoogle Scholar
  5. 5.
    Nalwa H (1999) Handbook of Low and High Dielectric Constant Materials and Their Applications. Academic, LondonGoogle Scholar
  6. 6.
    Shamiryan D, Abell T, Iacopi F, Maex K (2004). Mater Today 7:34–39CrossRefGoogle Scholar
  7. 7.
    Devaraju S, Prabunathan P, Selvi M, Alagar M (2013). Front Chem 1:19CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Megson NJL (1958) Phenolic Resin Chemistry. Butter-worth Press, LondonGoogle Scholar
  9. 9.
    Knop A, Scheib W (1979) Chemistry and Application of Phenolic Resins. Springer-Verlag, New YorkCrossRefGoogle Scholar
  10. 10.
    Tanaka A, Nakatsuka R (1980). J Adhes Soc Japn 1:97Google Scholar
  11. 11.
    Matsumoto A, Hasegawa K, Fukuda A, Otsuki K (1990). J Appl Polym Sci 43:365CrossRefGoogle Scholar
  12. 12.
    Matsumoto A, Hasegawa K, Fukuda A, Otsuki K (1992). J Appl Polym Sci 44:205 1547CrossRefGoogle Scholar
  13. 13.
    Wu HD, Ma CCM, Lee MS, Wu YD (1996). Angew Macromol Chem 35:235Google Scholar
  14. 14.
    Ma CCM, Wu HD (1995 July 13-15) In Proceedings of the Interchain Symposium on Polymer Blends, Hsing Chu, TaiwanGoogle Scholar
  15. 15.
    Lochte HW, Stranss EL, Conley RT (1965). J Appl Polym Sci 9:2799CrossRefGoogle Scholar
  16. 16.
    Conley RT (1963). J Appl Polym Sci 7:103CrossRefGoogle Scholar
  17. 17.
    Nielsen LE (1962) Mechanical Properties of Polymers. Van Nostrand Reinhold, New YorkGoogle Scholar
  18. 18.
    Kim S, Chiba T, Inoue T (1993). Polymer 34:2809CrossRefGoogle Scholar
  19. 19.
    Kim S, Chiba T, Inoue T (1995). Polymer 36:4367Google Scholar
  20. 20.
    Kim BS, Inoue T (1995). Polymer 36:1985CrossRefGoogle Scholar
  21. 21.
    Kim BS (1997). J Appl Polym Sci 65:85CrossRefGoogle Scholar
  22. 22.
    Wang F-Y, Ma C-CM, Wu W-J (1999). J Appl Polym Sci 73:881–887CrossRefGoogle Scholar
  23. 23.
    Mark HF, Bikales NM, Overberger CG, Menges G (1985) Encyclopaedia of polymer science and technology. John Wiley and Sons, New YorkGoogle Scholar
  24. 24.
    Mikhailov GP, Borisova TI, Dmitrochenko DA (1956). J Tech Phys (USSR) 26:1924 (see Sov. Phys. Tech. Phys. 1: (1956) 1857Google Scholar
  25. 25.
    Mikhailov GP, Borisova TI (1961). Polym Sci (USSR) 2:387Google Scholar
  26. 26.
    Adachi K (1997) In: Runt JP, Fitzgerald JJ (eds) Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications. ACS, Washington, p 261Google Scholar
  27. 27.
    Mead DJ, Fuoss RM (1942). J Am Chem Soc 64:2389CrossRefGoogle Scholar
  28. 28.
    Deutsch K, Hoff EAW, Reddish W (1954). J Polym Sci 13:565CrossRefGoogle Scholar
  29. 29.
    Lavina S, Negro E, Pace G, Gross S, Depaoli G, Vidali M, Di Noto V (2007). J Non Cryst Solids 353:2878Google Scholar
  30. 30.
    J Heijboer, Kolloid Z (1956) 134:149.Google Scholar
  31. 31.
    Brouckere L, Offergeld G (1958). J Polym Sci 30:105CrossRefGoogle Scholar
  32. 32.
    Mikhailov GP, Borisova TI (1958). Sov Phys Tech Phys 3:120Google Scholar
  33. 33.
    Saito S, Nakajima T (1959). J Appl Polym Sci 2:93CrossRefGoogle Scholar
  34. 34.
    Ishida Y, Yamafuji K (1961). Kolloid Z 177:97CrossRefGoogle Scholar
  35. 35.
    Gomez-Ribelles JL, Diaz-Calleja R (1985). J Polym Sci Polym Phys Ed 23:1297CrossRefGoogle Scholar
  36. 36.
    Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994). Macromolecules 27:4733CrossRefGoogle Scholar
  37. 37.
    Dimitrakopoulos CD, Malenfant PRL (2002). Adv Mater 14:99CrossRefGoogle Scholar
  38. 38.
    Guillaud G, Simon J, Germain JP, Coord (1998). Chem Rev 1433:178–180Google Scholar
  39. 39.
    Wilkinson AN, Ryan AJ (1998) Polymer processing: structure development. Kluwer, DordrechtGoogle Scholar
  40. 40.
    Khaydarov AA, Kazlauciunas A, Mounterey PE, Perrier S (2011). Polym Bull 66:1089–1098CrossRefGoogle Scholar
  41. 41.
    Wu T, Xie T, Yang G (2009). J Appl Polym Sci 111:101–107CrossRefGoogle Scholar
  42. 42.
    Robeson LM (2007) Polymer blends a comprehensive review. Munich, Carl Hanser VerlagCrossRefGoogle Scholar
  43. 43.
    Paul DR, Barlow JW (1979) A brief review of polymer blend technology. In: Multiphase Polymers; Advances in Chemistry; American Chemical Society: Washington, DC; Vol. 176, Chapter 17: 315-335Google Scholar
  44. 44.
    Rozentsveig IB, Levkovskaya GGG, Mirskova AN (1999). Russ J Org Chem 35:895–898Google Scholar
  45. 45.
    Wang F-Y, Ma C-CM, Wu H-D (1999). J Appl Polym Sci 74:2283–2289CrossRefGoogle Scholar
  46. 46.
    Preda N, Rusen E, Musuc A, Enculescu M, Matei E, Marculescu B, Fruth V, Enculescu I (2010). Mater Res Bull 45:1008–1012CrossRefGoogle Scholar
  47. 47.
    Guo Z, Henry LL, Palshin V, Podlaha EJ (2006). J Mater Chem 16:1772–1777CrossRefGoogle Scholar
  48. 48.
    Huang C-F, Kuo S-W, Lina H-C, Chena J-K, Chena Y-K, Xub H, Changa F-C (2004). Polymer 45:5913–5921CrossRefGoogle Scholar
  49. 49.
    Wang F-Y, Ma C-CM, Hung AYC, Wu H-D (2001). Macromol Chem Phys 202:11Google Scholar
  50. 50.
    Hosakawa M, Akiyama S (1999). Polym J 3:13–20CrossRefGoogle Scholar
  51. 51.
    Davis RD, Jarrett WL, Mathias LJ (2001). Polymer 42:2621CrossRefGoogle Scholar
  52. 52.
    Choi YS, Ham HT, Chung IJ (2003). Polymer 44:8147–8154CrossRefGoogle Scholar
  53. 53.
    Dias RCM, Goes AM, Serakides R, Ayres E, Orefice RL (2010). Mater Res 13:211CrossRefGoogle Scholar
  54. 54.
    Chiou C-W, Lin Y-C, Wang L, Maeda R, Hayakawa T, Kuo S-W (2014). Macromolecules 47:8709–8721CrossRefGoogle Scholar
  55. 55.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006). Solid State Ionics 177:2679–2682CrossRefGoogle Scholar
  56. 56.
    Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986). Macromolecules 19:2160–2168CrossRefGoogle Scholar
  57. 57.
    Manring LE (1989). Macromolecules 22:2673–2677CrossRefGoogle Scholar
  58. 58.
    Manring LE, Sogah DY, Cohen GM (1989). Macromolecules 22:4652–4654CrossRefGoogle Scholar
  59. 59.
    Viratyaporn W, Lehman RL (2011). J Therm Anal Calorim 103:267–273CrossRefGoogle Scholar
  60. 60.
    Madhukar K, Sesha Sainath AV, Sanjeeva Rao B, Suresh Kumar D, Bikshamaiah N, Srinivas Y, Mohan Babu N, Ashok B (2012). Polym Eng Sci 53:397–402CrossRefGoogle Scholar
  61. 61.
    Redjel B (1995). Plast Rubb Compos Applic 24:221Google Scholar
  62. 62.
    St John NA, Brown JR (1998). Compos Part A 29A:939–946CrossRefGoogle Scholar
  63. 63.
    Richeton J, Azhi S, Vecchio KS, Jiang FC, Adharapurapu RR (2006). Int J Solids Struct 43:2318CrossRefGoogle Scholar
  64. 64.
    Mulliken AD, Boyce MC (2006). Int J Solids Struct 43:1331CrossRefGoogle Scholar
  65. 65.
    Young T (1805). Philos Trans R Soc Lond 95:65–87CrossRefGoogle Scholar
  66. 66.
    Lin JJ, Wang XD (2007). Polymer 48:318–329CrossRefGoogle Scholar
  67. 67.
    Deligoz H, Yalcinyuva T, Ozgumus S, Yildirim S (2006). J Appl Polym Sci 100:810–818CrossRefGoogle Scholar
  68. 68.
    Zhu L (2014). J Phys Chem Lett 5(21):3677–3687CrossRefPubMedGoogle Scholar
  69. 69.
    Treufeld I, Wang DH, Kurdish BA, Tan L-S, Zhu L (2014). J Mater Chem A 2(48):20683–20696CrossRefGoogle Scholar
  70. 70.
    Gardziella A, Pilato LA, Knop A (2000) Phenolic Resins Chemistry, Applications, Standardization, and Ecology. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  71. 71.
    Knop A, Pilato LA (1985) Phenolic Safety Resins: Chemistry, Applications, and Performance. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  72. 72.
    Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E (2007). Eur Polym J 43:673–696CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Condensed Matter Research Lab, CCGVIT UniversityVelloreIndia

Personalised recommendations