Advertisement

Journal of Polymer Research

, 25:196 | Cite as

Morphology and property changes in PLA/PHBV blends as function of blend composition

  • Gurmeet S. Kanda
  • Ilham Al-Qaradawi
  • Adriaan S. Luyt
ORIGINAL PAPER
  • 40 Downloads

Abstract

PLA/PHBV blends were prepared by melt mixing. The morphology and physical properties of the blends and neat polymers were investigated. Scanning electron microscopy (SEM) studies provided evidence of interfacial cavities and weak interfacial interaction between the two polymers, and no obvious co-continuous morphology was observed in any of the investigated blends. Positron annihilation lifetime spectroscopy (PALS) indicated the presence of open-volume cavities with sub-nanometre diameters; far smaller than observed from the SEM images. The mean size and relative concentration of these cavities increased with increasing PHBV content. A weak negative deviation in the mean size for low PHBV content possibly indicates some degree of partial miscibility. The glass transition temperature of PLA in the blends decreased with increasing PHBV content, and offers support to some PHBV being miscible with the PLA. The degree of crystallinity in the blends show interesting behaviour that may be explained in terms of the complex morphology observed for these blends. The thermal conductivity of the samples varied with composition, but increased with increasing PHBV content, which was probably related to the increasing crystallinity. Both the tensile strength and Young’s modulus decreased with increasing PHBV content for the sequence of blends, and both parameters exhibited maximum values for 10 wt.% PHBV. For samples between 50/50 and 10/90 PLA/PHBV the tensile strength and Young’s modulus were comparable to or lower than those for both the neat polymers.

Keywords

Poly(lactic acid) Poly(3-hydroxybuterate-co-hydroxyvalerate) Blends Morphology Characterization Positron annihilation lifetime spectroscopy 

Notes

Acknowledgements

This publication was made possible by PDRA grant PDRA2-1118-14127 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

References

  1. 1.
    Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRefGoogle Scholar
  2. 2.
    Rivera-Gómez C, Galán-Marín C (2017) Biodegradable fiber-reinforced polymer composites for construction applications. In: natural Fiber-reinforced biodegradable and Bioresorbable polymer composites. Woodhead Publishing, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Facchetti A (2011) π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758CrossRefGoogle Scholar
  4. 4.
    Patil A, Patel A, Purohit R (2017) An overview of polymeric materials for automotive applications. Mater Today: Proc 4:3807–3815CrossRefGoogle Scholar
  5. 5.
    Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852CrossRefGoogle Scholar
  6. 6.
    McKeen LW (2014) Plastics used in medical devices A2 - Modjarrad, Kayvon. In: Ebnesajjad S (ed) Handbook of polymer applications in medicine and medical devices. Oxford, William Andrew PublishingGoogle Scholar
  7. 7.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  8. 8.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefPubMedGoogle Scholar
  9. 9.
    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid) - mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366CrossRefGoogle Scholar
  10. 10.
    Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79CrossRefGoogle Scholar
  11. 11.
    Mofokeng J, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym Test 45:93–100CrossRefGoogle Scholar
  12. 12.
    Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRefGoogle Scholar
  13. 13.
    Verhoogt H, Ramsay BA, Favis BD (1994) Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer 35:5155–5169CrossRefGoogle Scholar
  14. 14.
    Liu Q, Shyr T-W, Tung C-H, Deng B, Zhu M (2011) Block copolymers containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ɛ-caprolactone) units: synthesis, characterization and thermal degradation. Fiber Polym 12:848–856CrossRefGoogle Scholar
  15. 15.
    El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674CrossRefGoogle Scholar
  16. 16.
    Nanda MR, Misra M, Mohanty AK (2011) The effects of process engineering on the performance of PLA and PHBV blends. Macromol Mater Eng 296:719–728CrossRefGoogle Scholar
  17. 17.
    Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 47:179–186CrossRefGoogle Scholar
  18. 18.
    Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757CrossRefGoogle Scholar
  19. 19.
    Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interf 4:3091–3101CrossRefGoogle Scholar
  20. 20.
    Zhao H, Cui Z, Sun X, Turng L-S, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52:2569–2581CrossRefGoogle Scholar
  21. 21.
    Ma P, Spoelstra AB, Schmit P, Lemstra PJ (2013) Toughening of poly(lactic acid) by poly(β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content. Eur Polym J 49:1523–1531CrossRefGoogle Scholar
  22. 22.
    Liu Q, Wu C, Zhang H, Deng B (2015) Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: morphology, structure, and property. J Appl Polym Sci 132:42689Google Scholar
  23. 23.
    Zembouai I, Bruzaud S, Kaci M, Benhamida A, Corre Y-M, Grohens Y, Lopez-Cuesta J-M (2014) Synergistic effect of compatibilizer and Cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polym Eng Sci 54:2239–2251CrossRefGoogle Scholar
  24. 24.
    Zembouai I, Bruzaud S, Kaci M, Benhamida A, Corre Y-M, Grohens Y, Taguet A, Lopez-Cuesta J-M (2014) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior. J Polym Environ 22:131–139CrossRefGoogle Scholar
  25. 25.
    Zembouai I, Kaci M, Bruzaud S, Benhamida A, Corre Y-M, Grohens A (2013) A study of morphological, thermal, rheological and barrier properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym Test 32:842–851CrossRefGoogle Scholar
  26. 26.
    González-Ausejo J, Gámez-Pérez J, Balart R, Lagarón JM, Cabedo L (2017) Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polym Compos.  https://doi.org/10.1002/pc.24538
  27. 27.
    Richards E, Rizvi R, Chow A, Naguib H (2008) Biodegradable composite foams of PLA and PHBV using subcritical CO2. J Polym Environ 16:258–266CrossRefGoogle Scholar
  28. 28.
    Mofokeng JP, Luyt AS (2015) Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim Acta 613:41–53CrossRefGoogle Scholar
  29. 29.
    Gerard T, Budtova T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polym J 48:1110–1117CrossRefGoogle Scholar
  30. 30.
    Ferreira B, Zavaglia C, Duek E (2002) Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906CrossRefGoogle Scholar
  31. 31.
    Modi S, Koelling K, Vodovotz Y (2012) Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis. J Appl Polym Sci 124:3074–3081CrossRefGoogle Scholar
  32. 32.
    González-Ausejo J, Sánchez-Safont E, Lagarón JM, Balart R, Cabedo L, Gámez-Pérez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)–poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134(20):N/a–n/aCrossRefGoogle Scholar
  33. 33.
    Jean Y, Mallon PE, Schrader D (2003) Principles and applications of positron and Positronium chemistry. World Scientific, LondonCrossRefGoogle Scholar
  34. 34.
    Jean YC (1990) Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchem J 42:72–102CrossRefGoogle Scholar
  35. 35.
    Dlubek G, Kilburn D, Bondarenko V, Pionteck J, Krause-Rehberg R, Ashraf Alam M (2004) Positron annihilation: a unique method for studying polymers. Macromol Symp 210:11–20CrossRefGoogle Scholar
  36. 36.
    Dlubek G, Stejny J, Lüpke T, Bamford D, Petters K, Hübner C, Alam MA, Hill MJ (2002) Free-volume variation in polyethylenes of different crystallinities: positron lifetime, density, and X-ray studies. J Polym Sci B Polym Phys 40:65–81CrossRefGoogle Scholar
  37. 37.
    Machado JC, Silva GG, de Oliveira FC, Lavall RL, Rieumont J, Licinio P, Windmöller D (2007) Free-volume and crystallinity in low molecular weight poly (ethylene oxide). J Polym Sci B Polym Phys 45:2400–2409CrossRefGoogle Scholar
  38. 38.
    Madani MM, MacQueen RC, Granata RD (1996) Positron annihilation lifetime study of PTFE/silica composites. J Polym Sci B Polym Phys 34:2767–2770CrossRefGoogle Scholar
  39. 39.
    Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors: defect studies. Springer Verlag Berlin HeidelbergGoogle Scholar
  40. 40.
    Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALSfit: a new program for the evaluation of positron lifetime spectra. Phys Status Solidi (c) 4:4004–4006CrossRefGoogle Scholar
  41. 41.
    Staab T, Somieski B, Krause-Rehberg R (1996) The data treatment influence on the spectra decomposition in positron lifetime spectroscopy part 2: the effect of source corrections. Nucl Instr Meth Phys Res A 381:141–151CrossRefGoogle Scholar
  42. 42.
    McGuire S, Keeble D (2006) Positron lifetimes of polycrystalline metals: a positron source correction study. J Appl Phys 100:103504CrossRefGoogle Scholar
  43. 43.
    Kanda GS, Keeble DJ (2016) Positron annihilation lifetime spectroscopy source correction determination: a simulation study. Nucl Instr Meth Phys Res A 808:54–59CrossRefGoogle Scholar
  44. 44.
    Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510CrossRefGoogle Scholar
  45. 45.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58CrossRefGoogle Scholar
  46. 46.
    Dlubek G, Taesler C, Pompe G, Pionteck J, Petters K, Redmann F, Krause-Rehberg R (2002) Interdiffusion in a particle matrix system of two miscible polymers: an investigation by positron annihilation lifetime spectroscopy and differential scanning calorimetry. J Appl Polym Sci 84:654–664CrossRefGoogle Scholar
  47. 47.
    Kline DE (1961) Thermal conductivity studies of polymers. J Polym Sci 50:441–450CrossRefGoogle Scholar
  48. 48.
    Dlubek G, Saarinen K, Fretwell HM (1998) The temperature dependence of the local free volume in polyethylene and polytetrafluoroethylene: a positron lifetime study. J Polym Sci B Polym Phys 36:1513–1528CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and PhysicsQatar UniversityDohaQatar
  2. 2.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations