Advertisement

The effect of MBS on the heat resistant, mechanical properties, thermal behavior and rheological properties of PLA/EVOH blend

  • Yanping Hao
  • Huili Yang
  • Hongwei Pan
  • Xianghai Ran
  • Huiliang Zhang
ORIGINAL PAPER

Abstract

This work focuses on improve the mechanical properties of poly(lactic acid)/poly(ethylene-co-vinyl alcohol) (PLA/EVOH) blend and simultaneously remained a high Vicat softening temperature (VST) using appropriate contents of methyl methacrylate–butadiene–styrene copolymer (MBS) via simple melt blending. The effects of MBS on the heat resistant, mechanical properties, thermal properties and rheological behavior were examined in detail with various techniques. The VST of neat PLA significantly increased to 159 °C from 66.8 °C after blending with 50 wt% EVOH. However, the VST was gradually decreased with increasing MBS content but were still much higher than that of neat PLA. On the basis of the tensile and impact tests results, PLA/EVOH/MBS blends showed a considerably higher elongation at break and impact strength. For all PLA/EVOH/MBS blends, the thermal stability was increased compared than that of PLA/EVOH blend without MBS. With increasing MBS content, the complex viscosity and storage modulus of PLA/EVOH blend increased, especially at low frequencies, indicating that MBS enhanced the chain entanglement in the PLA/EVOH matrix. In addition, the results Han curves and Cole–Cole plots indicated that the relaxation time was increased when MBS was added.

Keywords

Poly(lactic acid) Heat resistant Mechanical properties Thermal behavior Rheological properties 

Notes

Acknowledgements

This work was supported by the fund of Science and Technology Bureau of Jilin Province of China (No. 20170204012SF), Chinese Science Academy (Changchun Branch) (No. 2017SYHZ0018 and No. 2017SYHZ0016), and the project National of Key Research and Development Program of China (No. 2016YFC0501402).

References

  1. 1.
    Gross R, Kalra AB (2002) Biodegradable Polymers for the Environment. Science 297:803–807CrossRefGoogle Scholar
  2. 2.
    Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 44:5701–5710CrossRefGoogle Scholar
  3. 3.
    Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831CrossRefGoogle Scholar
  4. 4.
    Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:809–8823Google Scholar
  5. 5.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRefGoogle Scholar
  6. 6.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 10:8493–8501CrossRefGoogle Scholar
  7. 7.
    Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289–3298CrossRefGoogle Scholar
  8. 8.
    Liu MX, Zhang Y, Zhou CR (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75–76:52–59CrossRefGoogle Scholar
  9. 9.
    Murariua M, Bonnauda L, Yoanna P, Fontaineb G, Bourbigotb S, Duboisa P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95:374–381CrossRefGoogle Scholar
  10. 10.
    Lin S, Guo WN, Chen CY, Ma JL, Wang BB (2012) Mechanical properties and morphology of biodegradable poly(lactic acid)/poly (butylene adipate-co-coterephthalate) blends compatibilized by transesterification. Mater Des 36:604–608CrossRefGoogle Scholar
  11. 11.
    Meng QK, Hetzer M, Kee DD (2011) J Compos Mater PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties 45:1145–1158Google Scholar
  12. 12.
    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869CrossRefGoogle Scholar
  13. 13.
    Prakalathan K, Mohanty S, Nayak SK (2012) Polylactide/modified layered silicates nanocomposites: A critical analysis of morphological, mechanical and thermal properties. J Reinf Plast Compos 31:1300–1310CrossRefGoogle Scholar
  14. 14.
    Huda MS, Drzal LT, Mohanty AK, Mahanwar M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  15. 15.
    Nyambo C, Mohanty AK, Misra M (2011) Effect of Maleated Compatibilizer on Performance of PLA/Wheat Straw-Based Green Composites. Macromol Mater Eng 296:710–718CrossRefGoogle Scholar
  16. 16.
    Nyambo C, Mohanty AK, Misra M (2010) Polylactide-Based Renewable Green Composites from Agricultural Residues and Their Hybrids. Biomacromolecules 11:1654–1660CrossRefGoogle Scholar
  17. 17.
    Yu F, Liu T, Zhao X (2012) Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci 125:E99–E109CrossRefGoogle Scholar
  18. 18.
    Ray S, Yamada K, Okamoto M, Ueda K (2003) Biodegradable Polylactide/Montmorillonite Nanocomposites. J Nanosci Nanotechnol 3:503–510CrossRefGoogle Scholar
  19. 19.
    Baltazar-y-jimenez A, Sain M (2012) Effect of bismaleimide reactive extrusion on the crystallinity and mechanical performance of poly(lactic acid) green composites. J Appl Polym Sci 124:3013–3023CrossRefGoogle Scholar
  20. 20.
    Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51:3934–3939CrossRefGoogle Scholar
  21. 21.
    Nanda MR, Misra M, Mohanty AK (2011) The effects of process engineering on the performance of PLA and PHBV blends. Macromol Mater Eng 296:719–728CrossRefGoogle Scholar
  22. 22.
    Liu MH, Yin Y, Fan ZP, Zheng XW, Shen S, Deng PY, Zheng CB, Teng H, Zhang WX (2012) The effects of gamma-irradiation on the structure, thermal resistance and mechanical properties of the PLA/EVOH blends. Nucl Instr Meth Phys Res B 274:139–144CrossRefGoogle Scholar
  23. 23.
    Zhang HL, Liu NA, Ran XH, Han CY, Han LJ, Zhuang YG, Dong LS (2012) Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer. J Appl Polym Sci 125:E550–E561CrossRefGoogle Scholar
  24. 24.
    Yu T, Li R, Ren J (2009) Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans Nonferrous Metals Soc China 19:S651–S655CrossRefGoogle Scholar
  25. 25.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRefGoogle Scholar
  26. 26.
    Doyle CD (1961) Kinetic analysis of thermogravimetric data*. J Appl Polym Sci 5:285–292CrossRefGoogle Scholar
  27. 27.
    Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584CrossRefGoogle Scholar
  28. 28.
    Chopra D, Kontopoulou M, Vlassopoulos D, Hatzikiriakos SG (2002) Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheol Acta 41:10–24CrossRefGoogle Scholar
  29. 29.
    Willoughby BG (2016) The Cole–Cole plot for cure: The cure and reversion of natural rubber. J Appl Polym Sci 133:44085-1–44085-9Google Scholar
  30. 30.
    Pu Z, Zheng P, Jia K, Liu X (2016) Effect of surface functionalization on the properties (rheological, mechanical, and dielectric) and microtopography of PEN/CPEN-f-CNTs nanocomposites. Polym Compos 37:2622–2631CrossRefGoogle Scholar
  31. 31.
    Kwag H, Rana D, Cho K, Rhee J, Woo T, Lee BH, Choe S (2000) Binary blends of metallocene polyethylene with conventional polyolefins: rheological and morphological properties. Polym Eng Sci 40:1672–1681CrossRefGoogle Scholar
  32. 32.
    Kovacs J, Dominkovics Z, Voros G, Pukanszky B (2008) Network formation in PP/Layered silicate nanocomposites: modeling and analysis of rheological properties. Macromol Symp 267:47–51CrossRefGoogle Scholar
  33. 33.
    Wu DF, Wu L, Sun YR, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147CrossRefGoogle Scholar
  34. 34.
    Tian JH, Yu W, Zhou CX (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRefGoogle Scholar
  35. 35.
    Cho K, Lee BH, Hwang KM, Lee H, Choe S (1998) Rheological and mechanical properties in polyethylene blends. Polym Eng Sci 38:1969–1975CrossRefGoogle Scholar
  36. 36.
    Kim HK, Rana D, Kwag H, Choe S (2001) Melt rheology of ethylene 1-octene copolymer blends synthesized by Ziegler-Natta and metallocene catalysts. Korea Polym J 8:34–43Google Scholar
  37. 37.
    Han CD, Chuang HK (1985) Criteria for rheological compatibility of polymer blends. J Appl Polym Sci 30:4431–4454CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Polymer Ecomaterials, Chinese Academy of SciencesChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China

Personalised recommendations