Synthesis and characterization of conjugated and nanostructured poly(propargyl alcohol) polymers

  • Atef A. Abdel-Fattah
  • Yasser S. Soliman
  • M. M. Ghobashy
ORIGINAL PAPER

Abstract

New types of π-conjugated and colored poly(propargyl alcohol) polymers (poly-PGA) were prepared by the polymerization of propargyl alcohol (PGA) monomer in different media under the action of high energy photons, γ-rays, without the use of catalysts. The polymerization conditions depend on the used solvents (water, chloroform and dimethylformamide) and gases (O2 and N2). A singlet and broad electron paramagnetic resonance signal was observed in poly-PGA polymers, indicating the presence of free electrons and the delocalization of electrons through the polymer π-backbone. The synthesized polymers have FTIR bands (C=C) in the range of 1607–1652 cm−1 and an absorption broadband in the spectrum range of 305–316 nm. The poly-PGA polymers which synthesized in chloroform and DMF exhibited amorphous structures as approved by XRD results. In addition, both TEM and DLS measurements showed the formation of nanostructured polymers in the shape of nano-spheres, nano-stars and nano-networks depending on polymerization conditions. Radiation polymerization of the monomer in chloroform produced a polychlorinated polymer as demonstrated by EDX analysis. The polymers have optical band gaps in the range of 2.85–3.50 eV and conductivity in the range of 2.45 × 10−6 to 9.43 × 10−7 depending on the polymerization conditions and the media used.

Keywords

Radiation polymerization Nanostructures Functional polymers Polyacetylenes Semiconductor 

Notes

Acknowledgements

We would like to thank and appreciate Dr. Seth C. Rasmussen (Professor - Materials Chemistry and Chemical History, Department of Chemistry and Biochemistry, Materials and Nanotechnology Program, North Dakota State University) for his guidance and valuable information he has provided on the manuscript.

References

  1. 1.
    Feng X, Liu L, Wang S, Zhu D (2010) Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev 39:2411–2419CrossRefGoogle Scholar
  2. 2.
    Duarte A, Pu K-Y, Liu B, Bazan GC (2011) Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications. Chem Mater 23:501–515CrossRefGoogle Scholar
  3. 3.
    Thomas SW, Joly GD, Swager TM (2007) Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  4. 4.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated Polymer-Based Chemical Sensors. Chem Rev 100:2537–2574CrossRefGoogle Scholar
  5. 5.
    Liu J, Geng J, Liao L-D, Thakor N, Gao X, Liu B (2014) Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 5:854CrossRefGoogle Scholar
  6. 6.
    Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306CrossRefGoogle Scholar
  7. 7.
    Casalbore-Miceli G, Yang MJ, Camaioni N, Mari C-M, Li Y, Sun H, Ling M (2000) Investigations on the ion transport mechanism in conducting polymer films. Solid State Ionics 131:311–321CrossRefGoogle Scholar
  8. 8.
    Camaioni N, Casalbore-Miceli G, Martelli A, Yang MJ (1997) A novel solid state battery based on a polymer proton conductor: poly (propargyl alcohol) doped with perchloric acid. J Appl Electrochem 27:862–866CrossRefGoogle Scholar
  9. 9.
    Li J, Liu J, Wei CW, Liu B, O'Donnell M, Gao X (2013) Emerging applications of conjugated polymers in molecular imaging. Phys Chem Chem Phys 15:17006–17015CrossRefGoogle Scholar
  10. 10.
    Smela E (2003) Conjugated Polymer Actuators for Biomedical Applications. Adv Mater 15:481–494CrossRefGoogle Scholar
  11. 11.
    Deits W, Cukor P, Rubner M, Jopson H (1981) Analogs of polyacetylene. Preparation and properties. Ind Eng Chem Prod Res Dev 20:696–704CrossRefGoogle Scholar
  12. 12.
    Ito T, Shirakawa H, Ikeda S (1975) Thermalcis–trans isomerization and decomposition of polyacetylene. J Polym Sci A Polym Chem 13:1943CrossRefGoogle Scholar
  13. 13.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 0:578CrossRefGoogle Scholar
  14. 14.
    Carlin C, Chien JCW (1984) Semiconducting poly(monocyanoacetylenes). J Polym Sci A Polym Chem 22:2749CrossRefGoogle Scholar
  15. 15.
    Yang MJ, Sun HM, Casalbore-Miceli G, Camaioni N, Mari CM (1996) Synth Met 65Google Scholar
  16. 16.
    Faria RM, Oliveira Jr ON (1999) Exploiting the electrical properties of thin films of semiconducting polymers. Braz J Phys 29:360–370CrossRefGoogle Scholar
  17. 17.
    Skotheim TA, Reynoald JR eds (1997) Handbook of conducting polymers. CRC Press, page 205Google Scholar
  18. 18.
    Yang M, Zheng M, Furlani A, Russo MV (1994) A novel palladium catalyst for the polymerization of propargyl alcohol. J Polym Sci A Polym Chem 32:2709–2713CrossRefGoogle Scholar
  19. 19.
    Fally F, Virlet I, Riga J, Verbist JJ (1996) Detailed multitechnique spectroscopic surface and bulk characterization of plasma polymers deposited from 1-propanol, allyl alcohol, and propargyl alcohol. J Appl Polym Sci 59:1569–1584CrossRefGoogle Scholar
  20. 20.
    Hozumi K (1988) Plasma polymerization of unsaturated alcohols for deposition of hydrophilic thin film. Pure Appl Chem 60:697CrossRefGoogle Scholar
  21. 21.
    Camaioni N, Casalbore-Miceli G, Li Y, Mari CM, Yang MJ (2001) Ion conductivity in poly(p-diethynylbenzene-co-propargyl alcohol) films doped with iron trichloride: dependence on temperature. Solid State Ionics 144:355–359CrossRefGoogle Scholar
  22. 22.
    Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867CrossRefGoogle Scholar
  23. 23.
    Masuda T (2007) Substituted polyacetylenes. J Polym Sci A Polym Chem 45:165–180CrossRefGoogle Scholar
  24. 24.
    Voronkov MG, Pukhnarevich VB, Sushchinskaya SP, Annenkova VZ, Annenkova VM, Andreeva NJ (1980) Polymerization of acetylene and its monosubstitutes in the presence of halides and oxohalides of molybdenum and tungsten. J Polym Sci A1 18:53–57Google Scholar
  25. 25.
    Yamaguchi I, Osakada K, Yamamoto T (1994) Ruthenium complex catalyzed polymerization of OH or COOH group containing alkynes to give functionalized poly(acetylene)s. lnorg Chim Acta 220:35CrossRefGoogle Scholar
  26. 26.
    Kiyashkina ZS, Pomogailo AD, Kuzayev AI, Lagodzinskaya GV, Dyachkovskii FS (1980) Polymerization of acetylene monomers by molybdenum compounds fixed on the macromolecular supports. J Polym Sci Polym Symp 68:13CrossRefGoogle Scholar
  27. 27.
    Jenkins DW, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3274CrossRefGoogle Scholar
  28. 28.
    Svec FJ (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. Chromatographia 1217:902–924CrossRefGoogle Scholar
  29. 29.
    Georgiev IG, MacGillivray LR (2007) Metal-mediated reactivity in the organic solid state: from self-assembled complexes to metal–organic frameworks. Chem Soc Rev 36:1239–1248CrossRefGoogle Scholar
  30. 30.
    Batagin-Neto A, Bronze-Uhle ES, Fernandes DM, Fratoddi I, Venditti I, Decker F, Bodo E, Russo MV, Graeff CFO (2011) Optical behavior of conjugated Pt-containing polymetallaynes exposed to gamma-ray radiation doses. Phys Chem B 115:8047–8053CrossRefGoogle Scholar
  31. 31.
    Gutzke ME, Yanco WH (1962) Radiation polymerization of acetylene derivatives; Monsanto Res. Corp.: United States Dept. Comm., Off. Techn. Serv., AD N. 297177Google Scholar
  32. 32.
    Tabata Y, Saito B, Shibano H, Sobue H, Oshima K (1964) Radiation-induced liquid- and solid-phase polymerization of acetylene. Macromol Chem Phys 76:89CrossRefGoogle Scholar
  33. 33.
    Usanmaz A, Altürk E (2002) Radiation induced solid-state polymerization of acetylenedicaroxylic acid. J Macromol Sci Pure Appl Chem A39:379CrossRefGoogle Scholar
  34. 34.
    Cataldo F, Strazzulla G, Iglesias-Groth S (2009) Synthesis of polyphenylacetylene by radiation-induced polymerization in deoxycholic acid clathrate. Radiat Phys Chem 78:244–250CrossRefGoogle Scholar
  35. 35.
    Bassetti M, Fratoddi I, Lilla L, Pasquini C, Russo MV, Ursini O (2012) Synthesis of polyarylacetylenes by γ-ray-induced polymerization of terminal alkynes. Nanostructures of ortho-substituted derivatives. J Polym Sci A Polym Chem 50:5097–5106CrossRefGoogle Scholar
  36. 36.
    Scherf U, Gutacker A, Koenen N (2008) All-conjugated block copolymers. Acc Chem Res 41(9):1086CrossRefGoogle Scholar
  37. 37.
    Scherf U, Adamczyk S, Gutacker A, Koenen N (2009) All-conjugated, rod-rod block copolymers-generation and self-assembly properties. Macromol Rapid Comm 30:1059–1065CrossRefGoogle Scholar
  38. 38.
    Fielding LA, Derry MJ, Ladmiral V, Rosselgong J, Rodrigues AM, Ratcliffe LPD, Sugihara S, Armes SP (2013) RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chem Sci 4:2081CrossRefGoogle Scholar
  39. 39.
    Charleux B, Delaittre G, Rieger J, D’Agosto F (2012) Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 45:6753–6765CrossRefGoogle Scholar
  40. 40.
    Nyquist RA (1971) Vibrational assignments of H-C≡C-CH2OH and its deuterium analogs. Spectrochim Acta 27A:2513CrossRefGoogle Scholar
  41. 41.
    Dong J, Ozaki Y, Nakashima K (1997) FTIR studies of conformational energies of poly (acrylic acid) in cast films. J Polym Sci B Polym Phys 35.3:507–515CrossRefGoogle Scholar
  42. 42.
    Moharram MA, Khafagi MG (2007) Application of FTIR spectroscopy for structural characterization of ternary poly (acrylic acid)–metal–poly (vinyl pyrrolidone) complexes. J Appl Polym Sci 105(4):1888–1893CrossRefGoogle Scholar
  43. 43.
    Yang M, Sun H, Chen W (1995) Simultaneous polymerization and formation of poly(propargyl alcohol) films by a novel palladium catalyst. Polym J 27:928–933CrossRefGoogle Scholar
  44. 44.
    Zielhuis SW, Nijsen JFW, Dorland L, Krijger GC, van het Schip AD, Hennink WE (2016) Removal of chloroform from biodegradable therapeutic microspheres by radiolysis. Int J Pharm 315:67CrossRefGoogle Scholar
  45. 45.
    Wolfe DH (1960) Method of making propargyl chloride, U.S. Patent 2,926,204Google Scholar
  46. 46.
    Williams TF (1971) Radiation-induced ionic polymerization controlled by the presence of Lewis acids or Lewis bases, U.S. Patent 3616369Google Scholar
  47. 47.
    Hayon E, Hayashi N, Ibata T, Lichtin NN, Matsumoto A (1971) Pulse radiolysis of liquid amides. J Phys Chem 75:2267–2272CrossRefGoogle Scholar
  48. 48.
    Pukhalskaya GV, Kotov AG, Ya Pshezhetskii S (1969) The photochemistry of free radicals. The action of light on radicals in gamma irradiated formamide and imethylformamide. Khim Vysok Energii 3:340Google Scholar
  49. 49.
    Tran-Thi TH, Koulkes-Pujo AM (1983) Electron and organic radical anion solvation. Pulse radiolysis of tetrahydrofuran and its solutions of N-methylacetamide or pyrrolidone. J Phys Chem 87:1166–1169CrossRefGoogle Scholar
  50. 50.
    Colebourne N, Collinson E, Dainton FS (1963) 60 CO γ-radiolysis of N, N-dimethylformamide. Trans Faraday Soc 59:886CrossRefGoogle Scholar
  51. 51.
    Tsuda Y (1962) Copolymerization studies of radiation-induced polymerization at low temperature. J Polym Sci 58:289–297CrossRefGoogle Scholar
  52. 52.
    Ault BS, Andrews L (1975) Proton radiolysis of CHCl3and CHBr3at high dilution in argon during condensation at 15 °K. Infrared spectra of the CHX+2, CHX−2, and CHX−3molecular ions. J Chem Phys 63:1411–1418CrossRefGoogle Scholar
  53. 53.
    Abadie MJM (1982) Radiolysis of liquid chloroform in an oxygen free atmosphere. Radiat Phys Chem 19:63Google Scholar
  54. 54.
    Kawahara S, Tsuzuki S, Uchimaru T (2005) Lewis acidity/basicity of π-electron systems: theoretical study of a molecular interaction between a π system and a Lewis acid/base. Chem Eur J 11:4458–4464CrossRefGoogle Scholar
  55. 55.
    Fujita M, Ishida A, Majima T, Takamuku S (1996) Lifetimes of radical anions of dicyanoanthracene, phenazine, and anthraquinone in the excited state from the selective electron-transfer quenching. J Phys Chem 100:5382–5387CrossRefGoogle Scholar
  56. 56.
    Hayashi N, Hayon E, Ibata T, Lichtin NN, Matsumoto A (1971) Pulse radiolysis of liquid amides. J Phys Chem 76:2267Google Scholar
  57. 57.
    Jasien PG, Weber LL (2001) A CIS study of solvent effects on the electronic absorption spectrum of Reichardt’s dye. J Mol Struct THEOCHEM 572:203–212CrossRefGoogle Scholar
  58. 58.
    Yang L, Jamal R, Liu F, Wang Y, Abdiryim T (2017) Structure and photocatalytic activity of a low band gap donor–acceptor–donor (D–A–D) type conjugated polymer: poly(EDOT–pyridazine–EDOT). RSC Adv 7:1877–1886CrossRefGoogle Scholar
  59. 59.
    Guo X, Baumgarten M, Müllen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908CrossRefGoogle Scholar
  60. 60.
    Jang SH, Son TK (2014) Synthesis and characterization of a polyacetylene derivative with hydroxy functional groups. Mol Cryst Liq Cryst 597:153–158CrossRefGoogle Scholar
  61. 61.
    Gal YS, Jin SH, Park YI, Park JW, Lyoo W, Lim KT, Kim SY (2011) Electro-optical and electrochemical properties of poly(1-hexyne). Fibers Polym 12:291–295CrossRefGoogle Scholar
  62. 62.
    Zhang W, Tabei J, Shiotsuki M, Masuda T (2006) Synthesis of poly(propargyl esters) with rhodium catalysts and their characterization. Polym Bull 57:463–472CrossRefGoogle Scholar
  63. 63.
    Tauc J, Menth A, Wood D (1970) Optical and magnetic investigations of the localized states in semiconducting glasses. Phys Rev Lett 25:749–752CrossRefGoogle Scholar
  64. 64.
    Dai L, Li J, Yamada E (2002) Effect of glycerin on structure transition of PVA/SF blends. J Appl Polym Sci 86:2342–2347CrossRefGoogle Scholar
  65. 65.
    Akram M, Taha I, Ghobashy MM (2016) Low temperature pyrolysis of carboxymethylcellulose. Cellulose 23:1713–1724CrossRefGoogle Scholar
  66. 66.
    Geiss RH, Street GB, Volksen W, Economy J (1983) Polymer structure determination using electron diffraction techniques. IBM J Res Dev 27:321–329CrossRefGoogle Scholar
  67. 67.
    Masuda T, Higashimura T (1987) Polyacetylenes with substituents: their synthesis and properties. Adv Polym Sci 81:121Google Scholar
  68. 68.
    Gal YS, Lee WC, Kim SY, Park JW, Jin SH, Koh KN, Kim SH (2001) Synthesis and properties of poly-(2-ethynylpyridinium bromide) having propargyl side chains. J Polym Sci Part A Polym Chem 39:3151–3158CrossRefGoogle Scholar
  69. 69.
    Gal YS, Jin SH, Gui TL, Lee HJ, Kim SY, Kim DW, Ko JM, Chun JH, Jang SH, Kim BS, Lee WC (2003) Polymerization of 4-Dimethylamino-N-propargylpyridinium bromide by transition metal catalysts. J Macromol Sci Pure Appl Chem A40:401CrossRefGoogle Scholar
  70. 70.
    Stevens GC, Bloor D (1978) ESR studies of a diacetylene polymer I. Partially crystalline polymer extracts. Phys Status Solidi 45:483–491CrossRefGoogle Scholar
  71. 71.
    Weinberger BR, Kaufer J, Pron A, Heeger AJ, MacDiarmid AG (1979) Magnetic susceptibility of doped polyacetylene. Phys Rev B 20:223CrossRefGoogle Scholar
  72. 72.
    Weinberger BR, Ehrenfreund E, Pron A, Heeger AJ, MacDiarmid AG (1980) Electron spin resonance studies of magnetic soliton defects in polyacetylene. J Chem Phys 72:9CrossRefGoogle Scholar
  73. 73.
    Akagi K (2007) Liquid crystalline conjugated polymers – synthesis and properties In: Ramamoorthy A (ed) Thermotropic liquid crystals. Springer, pp 249–275Google Scholar
  74. 74.
    Lee I-H, Amaladass P, Yoon K-Y, Shin S, Kim Y-J, Kim I, Lee E, Choi T-L (2013) Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J Am Chem Soc 135:17695–17698CrossRefGoogle Scholar
  75. 75.
    Yoon K-Y, Lee I-H, Choi T-L (2014). RSC Adv 4:49180CrossRefGoogle Scholar
  76. 76.
    Lee I-H, Choi T-L (2016) Importance of choosing the right polymerization method for in situ preparation of semiconducting nanoparticles from the P3HT block copolymer. Polym Chem 7:7135–7141CrossRefGoogle Scholar
  77. 77.
    Lee I-H, Amaladass P, Choi TL (2014) One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chem Commun 50:7945–7948CrossRefGoogle Scholar
  78. 78.
    Shin S, Yoon K-Y, Choi T-L (2015) Simple preparation of various nanostructures viain situnanoparticlization of polyacetylene blocklike copolymers by one-shot polymerization. Macromolecules 48:1390–1397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Atef A. Abdel-Fattah
    • 1
  • Yasser S. Soliman
    • 1
  • M. M. Ghobashy
    • 1
  1. 1.National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA)Nasr CityEgypt

Personalised recommendations