Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review

REVIEW PAPER
  • 469 Downloads

Abstract

The design and synthesis of porous organic materials that have increasing physical and chemical characteristics have been discussed. For example, a variety of porous organic polymers, metal–organic frameworks, conjugated microporous polymers, and polymers of intrinsic microporosity have been designed and synthesized using simple and efficient procedures. Such materials have unique gas adsorption properties and can be used in gases separation and storage. In addition, they have high surface area, porosity, and selectivity towards carbon dioxide compared to other gases such as nitrogen and methane.

Keywords

Greenhouse gases Adsorption Carbon dioxide Porous organic polymers Microporous organic polymers Metal–organic frameworks 

Notes

Acknowledgements

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

  1. 1.
    Abas N, Khan N (2014) Carbon conundrum, climate change, CO2 capture and consumptions. J CO2 Util 8:39–48CrossRefGoogle Scholar
  2. 2.
    Zhang F, Xu L, Chen J, Chen X, Niu Z, Lei T, Li C, Zhao J (2013) Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 11(3):264–272CrossRefGoogle Scholar
  3. 3.
    Diapouli E, Chaloulakou A, Spyrellis N (2007) Levels of ultrafine particles in different microenvironments–implications to children exposure. Sci Total Environ 388(1–3):128–136CrossRefGoogle Scholar
  4. 4.
    Xiao G, Wang X, Zhang J, Ni M, Gao X, Luo Z, Cen K (2013) Granular bed filter: a promising technology for hot gas clean-up. Powder Technol 244:93–99CrossRefGoogle Scholar
  5. 5.
    Heidenreich S (2013) Hot gas filtration – a review. Fuel 104:83–94CrossRefGoogle Scholar
  6. 6.
    Dunn S (2001) Hydrogen futures: toward a sustainable energy system. International Energy Agency, ParisGoogle Scholar
  7. 7.
    Riahi K, Roehr RA, Schrattenholzer L, Miketa A (2001) Technology clusters in sustainable development scenarios. Progress Report of Environmental Issue Groups. International Forum of the Collaboration Projects in Spring, TokyoGoogle Scholar
  8. 8.
    van den Berg AWC, Berg VD, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681CrossRefGoogle Scholar
  9. 9.
    Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, De Weireld G, Vimont A, Daturi M, Chang J-S (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550–562CrossRefGoogle Scholar
  10. 10.
    Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4(10):3805–3819CrossRefGoogle Scholar
  11. 11.
    Mastalerz M, Schneider MW, Oppel IM, Presly O (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Ed 50(5):1046–1051CrossRefGoogle Scholar
  12. 12.
    D'Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRefGoogle Scholar
  13. 13.
    Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981CrossRefGoogle Scholar
  14. 14.
    Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4(1):42–55CrossRefGoogle Scholar
  15. 15.
    Keller II GE (1983) In: Whyte Jr TE, Yon CM, Wagener EH (eds) Industrial gas separations, ACS symposium series, vol 223. American Chemical Society, Washington, DCGoogle Scholar
  16. 16.
    Auer A, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173(2):259–271CrossRefGoogle Scholar
  17. 17.
    Ruthven DMS, Farouw S, Knaebel KS (1994) Pressure swing adsorption. Wiley, New YorkGoogle Scholar
  18. 18.
    Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New YorkGoogle Scholar
  19. 19.
    Humphrey JL, Keller II GE (1997) Separation process technology. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New YorkCrossRefGoogle Scholar
  21. 21.
    Sircar S (2002) Pressure swing adsorption. Ind Eng Chem Res 41(6):1389–1392CrossRefGoogle Scholar
  22. 22.
    Sircar S, Golden TC (2000) Purification of hydrogen by pressure swing adsorption. Sep Sci Technol 35(5):667–687CrossRefGoogle Scholar
  23. 23.
    Knaebel KS, Ruthven DM, Humphrey JL, Carr R (1999) In: Radecki PP, Crittenden JC, Shonnard DR, Bulloch JL (eds) Emerging separation and separative reaction technologies for process waste reduction: adsorption and membrane systems. AIChE Center for Waste Reduction Technologies, New YorkGoogle Scholar
  24. 24.
    Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. Cambridge University Press, New YorkGoogle Scholar
  25. 25.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity2nd edn. Academic Press, LondonGoogle Scholar
  26. 26.
    Roquerol F, Roquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications1st edn. Academic Press, LondonGoogle Scholar
  27. 27.
    Kuhl GH (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites: fundamentals and applications. New York, SpringerGoogle Scholar
  28. 28.
    Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2):145–149CrossRefGoogle Scholar
  29. 29.
    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45(2):293–303CrossRefGoogle Scholar
  30. 30.
    Kaneko K (1996) In: Dabrowski A, Tertykh VA (eds) Adsorption on new and modified inorganic sorbents, Studies in surface and catalysis, vol 99. 1st edn. Amsterdam, ElsevierGoogle Scholar
  31. 31.
    Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241CrossRefGoogle Scholar
  32. 32.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  33. 33.
    Seifert J, Emig G (1987) Mikrostrukturuntersuchungen an porösen Feststoffen durch Physisorptionsmessungen. Chem Ing Tech 59(6):475–484CrossRefGoogle Scholar
  34. 34.
    Weder C (2008) Hole control in microporous polymers. Angew Chem Int Ed 47(3):448–450CrossRefGoogle Scholar
  35. 35.
    Antonietti M, Ozin GA (2004) Promises and problems of mesoscale materials chemistry or why meso? Chem Eur J 10(1):28–41CrossRefGoogle Scholar
  36. 36.
    McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11(9):2610–2620CrossRefGoogle Scholar
  37. 37.
    Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100(4):1605–1644CrossRefGoogle Scholar
  38. 38.
    Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254–258CrossRefGoogle Scholar
  39. 39.
    Germain J, Fréchet JMJ, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5(10):1098–1111CrossRefGoogle Scholar
  40. 40.
    Klontzas E, Tylianakis E, Froudakis GE (2008) Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation. J Phys Chem C 112(24):9095–9098CrossRefGoogle Scholar
  41. 41.
    Tylianakis E, Klontzas E, Froudakis GE (2009) The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Nanotechnology 20(20):204030CrossRefGoogle Scholar
  42. 42.
    Germain J, Svec F, Fréchet JMJ (2008) Preparation of size-selective nanoporous polymer networks of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater 20(22):7069–7076CrossRefGoogle Scholar
  43. 43.
    Kuhn P, Krüuger K, Thomas A, Antonietti M (2008) “Everything is surface”: tunable polymer organic frameworks with ultrahigh dye sorption capacity. Chem Commun (44):5815–5817.  https://doi.org/10.1039/B814254H
  44. 44.
    Kuhn P, Forget A, Su D, Thomas A, Antonietti M (2008) From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J Am Chem Soc 130(40):13333–13337CrossRefGoogle Scholar
  45. 45.
    Tilford RW, Mugavero 3rd SJ, Pellechia PJ, Lavigne JJ (2008) Tailoring microporosity in covalent organic frameworks. Adv Mater 20(14):2741–2746CrossRefGoogle Scholar
  46. 46.
    Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41(8):2880–2885CrossRefGoogle Scholar
  47. 47.
    Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous conjugated poly(thienylene arylene) networks. Adv Mater 21(6):702–705CrossRefGoogle Scholar
  48. 48.
    Thomas A, Kuhn P, Weber J, Titirici M-M, Antonietti M (2009) Porous polymers: enabling solutions for energy applications. Macromol Rapid Commun 30(4–5):221–236CrossRefGoogle Scholar
  49. 49.
    Jiang J-X, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130(24):7710–7720CrossRefGoogle Scholar
  50. 50.
    Weber J, Su Q, Antonietti M, Thomas A (2007) Exploring polymers of intrinsic microporosity – microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28:1871–1876CrossRefGoogle Scholar
  51. 51.
    Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80(1):61–164CrossRefGoogle Scholar
  52. 52.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2008) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781CrossRefGoogle Scholar
  53. 53.
    Chang Z, Zhang D-S, Chen Q, Bu X-H (2013) Microporous organic polymers for gas storage and separation applications. Phys Chem Chem Phys 15:5430–5442CrossRefGoogle Scholar
  54. 54.
    Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34(6):471–484CrossRefGoogle Scholar
  55. 55.
    Enthaler S (2008) Carbon dioxide–the hydrogen-storage material of the future? ChemSusChem 1(10):801–804CrossRefGoogle Scholar
  56. 56.
    Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899CrossRefGoogle Scholar
  57. 57.
    Zhang C, Yang X, Zhao Y, Wang X, Yu M, Jiang J-X (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41CrossRefGoogle Scholar
  58. 58.
    Leaf D, Verolmec HJH, Hunt Jr WF (2003) Overview of regulatory/policy/economic issues related to carbon dioxide. Environ Int 29(2–3):303–310CrossRefGoogle Scholar
  59. 59.
    Ciferno JP, Litynski JL, Plasynski SI (2010) DOE/NETL carbon dioxide capture and storage RD&D roadmap. National Energy Technology Laboratory, PittsburghGoogle Scholar
  60. 60.
    Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion-carbon dioxide capture: an opportunity for membranes. J Membr Sci 359(1–2):126–139CrossRefGoogle Scholar
  61. 61.
    Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD (2008) Advances in CO2 capture technology–the U.S. department of energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20CrossRefGoogle Scholar
  62. 62.
    Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245CrossRefGoogle Scholar
  63. 63.
    Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) Synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRefGoogle Scholar
  64. 64.
    Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674CrossRefGoogle Scholar
  65. 65.
    Barrie J, Brown K, Hatcher PR, Schellhase HU (2004) Carbon dioxide pipelines: a preliminary review of design and risks. Greenhouse Gas Control Technol 1:315–320Google Scholar
  66. 66.
    Halmann MM, Steinberg M (1998) Greenhouse gas carbon dioxide mitigation: science and technology. CRC Press, New YorkGoogle Scholar
  67. 67.
    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727CrossRefGoogle Scholar
  68. 68.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99CrossRefGoogle Scholar
  69. 69.
    Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann P, Savolainen J, Schlömer S, von Stechow C, Zwickel T (2014) Climate change 2014: mitigation of climate change. working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  70. 70.
    Wallquist L, Seigo SL, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRefGoogle Scholar
  71. 71.
    Rubin ES (2005) IPCC special report on carbon dioxide capture and storage. US Climate Change Science Program Workshop, Washington, DCGoogle Scholar
  72. 72.
    Thomas A (2010) Functional materials: from hard to soft porous frameworks. Angew Chem Int Ed 49(45):8328–8344CrossRefGoogle Scholar
  73. 73.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424–428CrossRefGoogle Scholar
  74. 74.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943CrossRefGoogle Scholar
  75. 75.
    Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas–a review. Prog Polym Sci 34(6):561–580CrossRefGoogle Scholar
  76. 76.
    Lau CH, Li P, Li F, Chung T-S, Paul DR (2013) Reverse-selective polymeric membranes for gas separations. Prog Polym Sci 38(5):740–766CrossRefGoogle Scholar
  77. 77.
    Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26(6):853–893CrossRefGoogle Scholar
  78. 78.
    Baker RW (2009) In: Drioli E, Giorno L (eds) Membrane operations: innovative separations and transformations. Wiley-VCH, Weinheim, pp 167–194CrossRefGoogle Scholar
  79. 79.
    Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654CrossRefGoogle Scholar
  80. 80.
    Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24(8):1511–1517CrossRefGoogle Scholar
  81. 81.
    Kaliva M, Armatas GS, Vamvakaki M (2012) Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 28(5):2690–2695CrossRefGoogle Scholar
  82. 82.
    D’Alessandro DM, McDonald T (2011) Toward carbon dioxide capture using nanoporous materials. Pure Appl Chem 83(1):57–66CrossRefGoogle Scholar
  83. 83.
    Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155(3):553–566CrossRefGoogle Scholar
  84. 84.
    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRefGoogle Scholar
  85. 85.
    Dawson R, Cooper AI, Adams DJ (2013) Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym Int 62(3):345–352CrossRefGoogle Scholar
  86. 86.
    Jiang J-X, Cooper AI (2009) Microporous organic polymers: design, synthesis, and function. In: Schröder M (ed) Functional metal-organic frameworks: gas storage, separation and catalysis. Top Curr Chem vol 293. Springer, BerlinGoogle Scholar
  87. 87.
    Zhu X-L, Wang P-Y, Peng C, Yang J, Yan X-B (2014) Activated carbon produced from paulownia sawdust for high performance CO2 sorbents. Chin Chem Lett 25(6):929–932CrossRefGoogle Scholar
  88. 88.
    Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3(9):1136–1141CrossRefGoogle Scholar
  89. 89.
    Holst JR, Cooper AI (2010) Ultrahigh surface area in porous solids. Adv Mater 22(45):5212–5216CrossRefGoogle Scholar
  90. 90.
    Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR (2010) BCN: a graphene analogue with remarkable adsorptive properties. Chem Eur J 16(1):149–157CrossRefGoogle Scholar
  91. 91.
    Wright PA (2008) Microporous framework solids. Royal Society of Chemistry, CambridgeGoogle Scholar
  92. 92.
    Zhu Z, Li A, Zhong S, Liu F, Zhang Q (2008) Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure. J Appl Polym Sci 109(3):1692–1698CrossRefGoogle Scholar
  93. 93.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  94. 94.
    Besson M, Gallezot P, Perrard A, Pinel C (2005) Active carbons as catalysts for liquid phase reactions. Catal Today 102:160–165CrossRefGoogle Scholar
  95. 95.
    Xu H, Rudkevich DM (2004) CO2 in supramolecular chemistry: preparation of switchable supramolecular polymers. Chem Eur J 10(21):5432–5442CrossRefGoogle Scholar
  96. 96.
    Liebl MR, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25(6):970–980CrossRefGoogle Scholar
  97. 97.
    Li G, Wang Z (2013) Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules 46(8):3058–3066CrossRefGoogle Scholar
  98. 98.
    Wilmer CE, Farha OK, Bae Y-S, Hupp JT, Snurr RQ (2012) Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci 5(12):9849–9856CrossRefGoogle Scholar
  99. 99.
    Wang Z, Yuan S, Mason A, Reprogle B, Liu D-J, Yu LP (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45(18):7413–7419CrossRefGoogle Scholar
  100. 100.
    Liu L, Wang X, Zhang Q, Li Q, Zhao Y (2013) Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue. CrystEngComm 15(5):841–844CrossRefGoogle Scholar
  101. 101.
    McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683CrossRefGoogle Scholar
  102. 102.
    Zhang Y, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao F-S (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4(2):135–142CrossRefGoogle Scholar
  103. 103.
    İslamoğlu T, Rabbani MG, El-Kaderi HM (2013) Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. J Mater Chem A 1(35):10259–10266CrossRefGoogle Scholar
  104. 104.
    El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O'Keeffe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316(5822):268–272CrossRefGoogle Scholar
  105. 105.
    Liu L, Zhang J (2013) Triptycene-based microporous polymer with pending tetrazole moieties for CO2-capture application. Macromol Rapid Commun 34(23–24):1833–1837CrossRefGoogle Scholar
  106. 106.
    Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D-J (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46(25):4547–4549CrossRefGoogle Scholar
  107. 107.
    Konstas K, Taylor JW, Thornton AW, Doherty CM, Lim WX, Bastow TJ, Kennedy DF, Wood CD, Cox BJ, Hill JM, Hill AJ, Hill MR (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed 51(27):6639–6642CrossRefGoogle Scholar
  108. 108.
    Liu L, Li P-Z, Zhu L, Zou R, Zhao Y (2013) Microporous polymelamine network for highly selective CO2 adsorption. Polymer 54(2):596–600CrossRefGoogle Scholar
  109. 109.
    Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25(9):1630–1635CrossRefGoogle Scholar
  110. 110.
    Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170CrossRefGoogle Scholar
  111. 111.
    Tilford RW, Gemmill WR, Zur Loye H-C, Lavigne JJ (2006) Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem Mater 18(22):5296–5301CrossRefGoogle Scholar
  112. 112.
    Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 129(43):12914–12915CrossRefGoogle Scholar
  113. 113.
    Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130(36):11872–11873CrossRefGoogle Scholar
  114. 114.
    Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453CrossRefGoogle Scholar
  115. 115.
    Zwaneveld NAA, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L (2008) Organized formation of 2D extended covalent organic frameworks at surfaces. J Am Chem Soc 130(21):6678–6679CrossRefGoogle Scholar
  116. 116.
    Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2(8):672–677CrossRefGoogle Scholar
  117. 117.
    Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21(2):204–206CrossRefGoogle Scholar
  118. 118.
    Weston MH, Farha OK, Hauser BG, Hupp JT, Nguyen ST (2012) Synthesis and metalation of catechol-functionalized porous organic polymers. Chem Mater 24(7):1292–1296CrossRefGoogle Scholar
  119. 119.
    Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112(7):3959–4015CrossRefGoogle Scholar
  120. 120.
    Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765–1771CrossRefGoogle Scholar
  121. 121.
    Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883CrossRefGoogle Scholar
  122. 122.
    Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23(7):1650–1653CrossRefGoogle Scholar
  123. 123.
    Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan C-G, Han B-H (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087CrossRefGoogle Scholar
  124. 124.
    Zhao Y-C, Cheng Q-Y, Zhou D, Wang T, Han B-H (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22(23):11509–11514CrossRefGoogle Scholar
  125. 125.
    Zhao Y, Yao KX, Teng B, Zhang T, Han Y (2013) A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy Environ Sci 6(12):3684–3692CrossRefGoogle Scholar
  126. 126.
    Chen Q, Liu D-P, Zhu J-H, Han B-H (2014) Mesoporous conjugated polycarbazole with high porosity via structure tuning. Macromolecules 47(17):5926–5931CrossRefGoogle Scholar
  127. 127.
    Jin Y, Voss BA, Jin A, Long H, Noble RD, Zhang W (2011) Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J Am Chem Soc 133(17):6650–6658CrossRefGoogle Scholar
  128. 128.
    Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48(8):1141–1143CrossRefGoogle Scholar
  129. 129.
    Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133(49):19816–19822CrossRefGoogle Scholar
  130. 130.
    Zhang K, Kopetzki D, Seeberger PH, Antonietti M, Vilela F (2013) Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew Chem Int Ed 52(5):1432–1436CrossRefGoogle Scholar
  131. 131.
    Han SS, Mendoza-Cortés JL, Goddard WAIII (2009) Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRefGoogle Scholar
  132. 132.
    Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112(2):869–932CrossRefGoogle Scholar
  133. 133.
    Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24(22):3026–3031CrossRefGoogle Scholar
  134. 134.
    Xiang Z, Cao D (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33(14):1184–1190CrossRefGoogle Scholar
  135. 135.
    Filer A, Choi H-J, Seo J-M, Baek J-B (2014) Two and three dimensional network polymers for electrocatalysis. Phys Chem Chem Phys 16(23):11150–11161CrossRefGoogle Scholar
  136. 136.
    Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41(6):2083–2094CrossRefGoogle Scholar
  137. 137.
    McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43(12):5163–5176CrossRefGoogle Scholar
  138. 138.
    Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng X, Müllen K (2009) Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J Am Chem Soc 131(21):7216–7217CrossRefGoogle Scholar
  139. 139.
    Jin Y, Voss BA, McCaffrey R, Baggett CT, Noble RD, Zhang W (2012) Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs). Chem Sci 3(3):874–877CrossRefGoogle Scholar
  140. 140.
    Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24(42):5703–5707CrossRefGoogle Scholar
  141. 141.
    Lu W, Yuan D, Sculle J, Zhao D, Krishna R, Zhou H-C (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133(45):18126–18129CrossRefGoogle Scholar
  142. 142.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969CrossRefGoogle Scholar
  143. 143.
    Zacher D, Shekhah O, WÖll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38(5):1418–1429CrossRefGoogle Scholar
  144. 144.
    Kandambeth S, Mallich A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527CrossRefGoogle Scholar
  145. 145.
    Uribe-Romo FJ, Doonan CJ, Furukawa H, Sosaki K, Yaghi OM (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133(30):11478–11481CrossRefGoogle Scholar
  146. 146.
    Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131(44):16000–16001CrossRefGoogle Scholar
  147. 147.
    Alkordi MH, Haikal RR, Hassan YS, Emwas A-H, Belmabkhout Y (2015) Poly-functional porous-organic polymers to access functionality – CO2 sorption energetic relationships. J Mater Chem A 3(45):22584–22590CrossRefGoogle Scholar
  148. 148.
    Arab P, Rabbani MG, Sekizkardes AK, İslamoğlu T, El-Kaderi HM (2014) Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 26(3):1385–1392CrossRefGoogle Scholar
  149. 149.
    Li G, Liu Q, Xia B, Huang J, Li S, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polym J 91:242–247CrossRefGoogle Scholar
  150. 150.
    Cui P, Jing X-F, Yuan Y, Zhu G-S (2016) Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO2 separation. Chin Chem Lett 27(9):1479–1484CrossRefGoogle Scholar
  151. 151.
    D'Alelio GF, Crivello JV, Dehner TR, Schoenig RK (1967) Polymeric Schiff bases. VII. Some parameters in the evaluation of the thermal stability of poly(p-xylylidene-p-phenylenediamine). J Macromol Sci A Chem 1(7):1331–1364CrossRefGoogle Scholar
  152. 152.
    D'Alelio GF, Crivello JV, Schoenig RK, Huemmer JF (1967) Polymeric Schiff bases. VI. The direct syntheses of poly-Schiff bases. J Macromol Sci A Chem 1(7):1321–1330CrossRefGoogle Scholar
  153. 153.
    Davis MB (1997) Cobalt 1994. Coord Chem Rev 164:27–160CrossRefGoogle Scholar
  154. 154.
    Gupta VK, Agarwal S, Jakob A, Lang H (2006) A zinc-selective electrode based on N,N'-bis(acetylacetone)ethylenediimine. Sens Actuators B 114(2):812–818CrossRefGoogle Scholar
  155. 155.
    Thomas O, Inganäs O, Andersson MR (1998) Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 31(8):2676–2678CrossRefGoogle Scholar
  156. 156.
    Delman AD, Stein AA, Simms BB (1967) Synthesis and thermal stability of structurally related aromatic Schiff bases and acid amides. J Macromol Sci A Chem 1(1):147–178CrossRefGoogle Scholar
  157. 157.
    Nishat N, Hasnain S, Manisha A (2012) Synthetic, spectroscopic, magnetic, thermal, and antimicrobial approach towards new biocidal coordination polymers. J Appl Polym Sci 124(5):3971–3979CrossRefGoogle Scholar
  158. 158.
    Atta AM, Shaker NO, Maysour NE (2006) Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog Org Coat 56(2–3):100–110CrossRefGoogle Scholar
  159. 159.
    Kaya I, Vilayetoğlu AR, Topak H (2002) Synthesis of oligo-ortho-azomethinephenol and its oligomer-metal complexes: characterization and application as anti-microbial agents. J Appl Polym Sci 85(9):2004–2013CrossRefGoogle Scholar
  160. 160.
    Kaya I, Demir HÖ, Vilayetoğlu AR (2002) The synthesis and characterisation of planar oligophenol with Schiff base substitute. Synth Met 126(2–3):183–191CrossRefGoogle Scholar
  161. 161.
    Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Diversity 13(2):71–193CrossRefGoogle Scholar
  162. 162.
    Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374CrossRefGoogle Scholar
  163. 163.
    Yang G, Han H, Du C, Luo Z, Wang Y (2010) Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions. Polymer 51(26):6193–6202CrossRefGoogle Scholar
  164. 164.
    Manoranjan N, Won DH, Kim J, Woo SI (2016) Amide linked conjugated porous polymers for effective CO2 capture and separation. J CO2 Util 16:486–491CrossRefGoogle Scholar
  165. 165.
    Zhang J, Hao D, Lu H, Leng W, Gui J, Gao Y (2014) Facile fabrication of a novel microporous Schiff-base networks polymer membrane on surface modified porous α-Al2O3 support. Mater Lett 126:259–262CrossRefGoogle Scholar
  166. 166.
    Ahmed DS, El-Hiti GA, Yousif E, Hameed AS, Abdalla M (2017) New eco-friendly phosphorus organic polymers as gas storage media. Polymers 9(8):336CrossRefGoogle Scholar
  167. 167.
    Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779CrossRefGoogle Scholar
  168. 168.
    Svec F, Fréchet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205–211CrossRefGoogle Scholar
  169. 169.
    Kimmins SD, Cameron NR (2011) Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater 21(2):211–225CrossRefGoogle Scholar
  170. 170.
    Nischang I, Causon TJ (2016) Porous polymer monoliths: from their fundamental structure to analytical engineering applications. TrAC-Trends Anal Chem 75:108–117CrossRefGoogle Scholar
  171. 171.
    Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55(1):304–320CrossRefGoogle Scholar
  172. 172.
    Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Weberskirch R (2006) Covalent enzyme immobilization on to photopolymerized highly porous monoliths. Adv Mater 18(14):1822–1826CrossRefGoogle Scholar
  173. 173.
    Xie Y, Wang T-T, Liu X-H, Zou K, Deng W-Q (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960CrossRefGoogle Scholar
  174. 174.
    Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37(4):530–563CrossRefGoogle Scholar
  175. 175.
    Xiang Z, Cao D (2013) Porous covalent-organic materials: synthesis, clean energy application and design. J Mater Chem A 1(8):2691–2718CrossRefGoogle Scholar
  176. 176.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112(2):782–835CrossRefGoogle Scholar
  177. 177.
    Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15(20):1977–1986CrossRefGoogle Scholar
  178. 178.
    Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 121(50):9621–9624CrossRefGoogle Scholar
  179. 179.
    Jiang J-X, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI (2011) Metal–organic conjugated microporous polymers. Angew Chem Int Ed 50(5):1072–1075CrossRefGoogle Scholar
  180. 180.
    Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132(26):9138–9143CrossRefGoogle Scholar
  181. 181.
    Zhang P, Weng Z, Guo J, Wang C (2011) Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki–Miyaura coupling reaction. Chem Mater 23(23):5243–5249CrossRefGoogle Scholar
  182. 182.
    Li B, Guan Z, Wang W, Yang X, Hu J, Tan B, Li T (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki–Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24(25):3390–3395CrossRefGoogle Scholar
  183. 183.
    Xie Z, Wang C, deKrafft KE, Lin W (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc 133(7):2056–2059CrossRefGoogle Scholar
  184. 184.
    Chan-Thaw CE, Villa A, Katekomol P, Su D, Thomas A, Prati L (2010) Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett 10(2):537–541CrossRefGoogle Scholar
  185. 185.
    Hasell T, Wood CD, Clowes R, Jones JTA, Khimyak YZ, Adams DJ, Cooper AI (2010) Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem Mater 22(2):557–564CrossRefGoogle Scholar
  186. 186.
    Yang Y, Ogasawara S, Li G, Kato S (2013) Water compatible Pd nanoparticle catalysts supported on microporous polymers: their controllable microstructure and extremely low Pd-leaching behavior. J Mater Chem A 1(11):3700–3705CrossRefGoogle Scholar
  187. 187.
    Lu Y-M, Zhu H-Z, Li W-G, Hu B, Yu S-H (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1(11):3783–3788CrossRefGoogle Scholar
  188. 188.
    Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with –OH functional groups and high CO2 capture capacity. Chem Mater 23(7):1818–1824CrossRefGoogle Scholar
  189. 189.
    Katsoulidis AP, He J, Kanatzidis MG (2012) Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chem Mater 24(10):1937–1943CrossRefGoogle Scholar
  190. 190.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRefGoogle Scholar
  191. 191.
    Qian H, He Q, Zheng J, Li S, Zhang S (2014) Catechol-functionalized microporous organic polymer as supported media for Pd nanoparticles and its high catalytic activity. Polymer 55(2):550–555CrossRefGoogle Scholar
  192. 192.
    Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048CrossRefGoogle Scholar
  193. 193.
    Rose M, Böhlmann W, Sabo M, Kaskel S (2008) Element–organic frameworks with high permanent porosity. Chem Commun 44(21):2462–2464CrossRefGoogle Scholar
  194. 194.
    Weber J, Thomas A (2008) Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130(20):6334–6335CrossRefGoogle Scholar
  195. 195.
    Hao L, Zhang S, Liu R, Ning J, Zhang G, Zhi L (2015) Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 27(20):3190–3195CrossRefGoogle Scholar
  196. 196.
    Zhu X, Tian C, Mahurin SM, Chai S-H, Wang C, Brown S, Veith GM, Luo H, Liu H, Dai S (2012) A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 134(25):10478–10484CrossRefGoogle Scholar
  197. 197.
    Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022CrossRefGoogle Scholar
  198. 198.
    Kiskan B, Antonietti M, Weber J (2012) Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 45(3):1356–1361CrossRefGoogle Scholar
  199. 199.
    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444CrossRefGoogle Scholar
  200. 200.
    Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674CrossRefGoogle Scholar
  201. 201.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc Chem Res 34(4):319–330CrossRefGoogle Scholar
  202. 202.
    Tranchemontagne DJ, Mendoza-Cortés JL, O'Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38(5):1257–1283CrossRefGoogle Scholar
  203. 203.
    Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRefGoogle Scholar
  204. 204.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRefGoogle Scholar
  205. 205.
    Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRefGoogle Scholar
  206. 206.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352CrossRefGoogle Scholar
  207. 207.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504CrossRefGoogle Scholar
  208. 208.
    Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRefGoogle Scholar
  209. 209.
    O'Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38(5):1215–1217CrossRefGoogle Scholar
  210. 210.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRefGoogle Scholar
  211. 211.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keefe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRefGoogle Scholar
  212. 212.
    Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed 44(30):4670–4679CrossRefGoogle Scholar
  213. 213.
    Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17(30):3154–3160CrossRefGoogle Scholar
  214. 214.
    Murray LJ, Dincã M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRefGoogle Scholar
  215. 215.
    Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378(6558):703–706CrossRefGoogle Scholar
  216. 216.
    Chen B, Xiang S, Qian G (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43(8):1115–1124CrossRefGoogle Scholar
  217. 217.
    Wang C, Zhang T, Lin W (2012) Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev 112(2):1084–1104CrossRefGoogle Scholar
  218. 218.
    Zhu C, Yuan G, Chen X, Yang Z, Cui Y (2012) Chiral nanoporous metal–metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J Am Chem Soc 134(19):8058–8061CrossRefGoogle Scholar
  219. 219.
    Gao WY, Chrzanowski M, Ma S (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43(16):5841–5866CrossRefGoogle Scholar
  220. 220.
    Zhao D, Timmons DJ, Yuan D, Zhou H-C (2011) Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc Chem Res 44(2):123–133CrossRefGoogle Scholar
  221. 221.
    Lv X-L, Tong M, Hong H, Wang B, Gan L, Yang Q, Zhong C, Li JR (2015) A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake. J Solid State Chem 223:104–108CrossRefGoogle Scholar
  222. 222.
    Fu Z, Huang J (2017) Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib 438:1–9CrossRefGoogle Scholar
  223. 223.
    Ding L, Gao H, Xie F, Li W, Bai H, Li L (2017) Porosity-enhanced polymers from hyper-cross-linked polymer precursors. Macromolecules 50(3):956–962CrossRefGoogle Scholar
  224. 224.
    Davankov V, Tsyurupa M (2010) Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications, vol 56. 1st edn. Elsevier, AmsterdamGoogle Scholar
  225. 225.
    Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414CrossRefGoogle Scholar
  226. 226.
    Jing X, Zou D, Cui P, Ren H, Zhu G (2013) Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. J Mater Chem A 1(44):13926–13931CrossRefGoogle Scholar
  227. 227.
    Yao S, Yang X, Yu M, Zhang Y, Jiang J-X (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2(21):8054–8059CrossRefGoogle Scholar
  228. 228.
    Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134(26):10741–10744CrossRefGoogle Scholar
  229. 229.
    Zhu X, Mahurin SM, An S-H, Do-Thanh C-L, Tian C, Li Y, Gill LC, Hagaman EW, Bian Z, Zhou J-H, Hu J, Liu H, Dai S (2014) Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem Commun 50(59):7933–7936CrossRefGoogle Scholar
  230. 230.
    Zhang Y, Li Y, Wang F, Zhao Y, Zhang C, Wang X, Jiang J-X (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55(22):5746–5750CrossRefGoogle Scholar
  231. 231.
    Fu Z, Jia J, Li J, Liu C (2017) Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem Eng J 323:557–564CrossRefGoogle Scholar
  232. 232.
    Liu G, Wang Y, Shen C, Ju Z, Yuan D (2015) A facile synthesis of microporous organic polymers for efficient gas storage and separation. J Mater Chem A 3(6):3051–3058CrossRefGoogle Scholar
  233. 233.
    Uribe-Romo FJ, Hunt JR, Furukawa H, KlÖck C, O'Keeffe M, Yaghi OM (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131(13):4570–4571CrossRefGoogle Scholar
  234. 234.
    McKeown NB (2012) Polymers of intrinsic microporosity. ISRN Mater Sci 2012:513986CrossRefGoogle Scholar
  235. 235.
    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–2):1–49CrossRefGoogle Scholar
  236. 236.
    MacLean DL, Bollinger WA, King DE, Narayan RS (1986) In: Li NN, Calo JM (eds) Recent developments in separation science. Boca Raton, CRC PressGoogle Scholar
  237. 237.
    Henis JMS (1994) In: Paul DR, Yampolśkii YP (eds) Polymeric gas separation membranes. Boca Raton, CRC PressGoogle Scholar
  238. 238.
    Backhouse I (1991) In: Turner M (ed) Effective industrial membrane processes: benefits and opportunities. Springer, Amsterdam, pp 383–389CrossRefGoogle Scholar
  239. 239.
    Sanders E, Clark DO, Jensvold JA, Beck HN, Lipscomb GG, Coan FL (1988) Process for preparing POWADIR membranes from tetrahalobisphenol A polycarbonate. US Patent 4,772,392Google Scholar
  240. 240.
    Baker RW (2002) Future directions on membrane gas separation technology. Ind Eng Chem Res 41(6):1393–1411CrossRefGoogle Scholar
  241. 241.
    Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121CrossRefGoogle Scholar
  242. 242.
    Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105(25):7473–7474CrossRefGoogle Scholar
  243. 243.
    Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun (2):230–231.  https://doi.org/10.1039/B311764B
  244. 244.
    Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031CrossRefGoogle Scholar
  245. 245.
    Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578CrossRefGoogle Scholar
  246. 246.
    Qiao S, Huang W, Du Z, Chen X, Shieh F-K, Yang R (2015) Phosphine oxide-based conjugated microporous polymers with excellent CO2 capture properties. New J Chem 39(1):136–141CrossRefGoogle Scholar
  247. 247.
    Dawson R, Laybourn A, Clowes R, Khimyak YZ, Adams DJ, Cooper AI (2009) Functionalized conjugated microporous polymers. Macromolecules 42(22):8809–8816CrossRefGoogle Scholar
  248. 248.
    Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16(50):4467–4470CrossRefGoogle Scholar
  249. 249.
    Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2(6):1173–1177CrossRefGoogle Scholar
  250. 250.
    Tan D, Xiong W, Sun H, Zhang Z, Ma W, Meng C, Fan W, Li A (2013) Conjugated microporous polymer with film and nanotube-like morphologies. Microporous Mesoporous Mater 176:25–30CrossRefGoogle Scholar
  251. 251.
    Zang J, Zhu Z, Sun H, Liang W, Li A (2016) Synthesis of functional conjugated microporous polymers containing pyridine units with high BET surface area for reversible CO2 storage. React Funct Polym 99:95–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceTikrit UniversityTikritIraq
  2. 2.Cornea Research Chair, Department of Optometry, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Chemistry, College of ScienceAl-Nahrain UniversityBaghdadIraq

Personalised recommendations