Advertisement

Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer

  • Mauro Almeida
  • Mariana Magalhães
  • Francisco Veiga
  • Ana Figueiras
REVIEW PAPER

Abstract

Research for new therapies to treat diseases like cancer, it is one of the focus of Health Sciences. Nowadays, the available therapeutic strategies have in many cases limitations and undesired side effects, which shows a need to find new therapies with a higher efficacy. In this regard, over the past few years, poloxamers and poloxamines have been gaining more attention in the pharmaceutical field, mainly due to their advantages as potential nanosystems. Therefore, poloxamers and poloxamines are amphiphilic block of copolymers constituted by PEO units, poly(ethylene oxide), and PPO units, poly(propylene oxide), presenting the capability to self-assembly in micellar structures in aqueous medium forming polymeric micelles, which improve theirs potential as drug and genetic material nanocarriers. Thereby, in order to create new alternative treatments for current pathologies, like cancer, alterations in the poloxamines and poloxamers, the combination of these with other polymers and the conjugation with ligands are being introduced as a viable option to allow the combination of therapies, such as the simultaneous delivery of a gene and a drug in the same system. These intelligent stimuli-sensitive systems, with well-defined structures and functionalities, make possible the development of a safe, specific and effective therapeutic strategy. Thus, this article intends to review several aspects of poloxamines and poloxamers concerning their general properties and their applications in drug and gene delivery. Also, are reviewed the preparation and characterization techniques of polymeric micelles with a focus in micelleplexes which can be used as a simultaneous drug and nucleic acid carrier.

Keywords

Poloxamine Poloxamer Micelleplex Combination cancer therapy 

References

  1. 1.
    Xiong XB, Falamarzian A, Garg SM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 155:248–261.  https://doi.org/10.1016/j.jconrel.2011.04.028 CrossRefGoogle Scholar
  2. 2.
    Yokoyama M (2014) Polymeric micelles as drug carriers: their lights and shadows. J Drug Target 22:576–583.  https://doi.org/10.3109/1061186X.2014.934688 CrossRefGoogle Scholar
  3. 3.
    Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18:412–420.  https://doi.org/10.1016/S0167-7799(00)01485-2 CrossRefGoogle Scholar
  4. 4.
    Herzberger J, Niederer K, Pohlit H et al (2016) Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem Rev 116:2170–2243.  https://doi.org/10.1021/acs.chemrev.5b00441 CrossRefGoogle Scholar
  5. 5.
    Aguilar MR, Elvira C, Gallardo A et al (2007) Smart polymers and their applications as biomaterials. Top. Tissue Eng 3:1–27Google Scholar
  6. 6.
    Mata JP, Majhi PR, Guo C et al (2005) Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J Colloid Interface Sci 292:548–556.  https://doi.org/10.1016/j.jcis.2005.06.013 CrossRefGoogle Scholar
  7. 7.
    Ahmad Z, Shah A, Siddiq M, Kraatz H-B (2014) Polymeric micelles as drug delivery vehicles. RSC Adv 4:17028.  https://doi.org/10.1039/C3RA47370H CrossRefGoogle Scholar
  8. 8.
    Jung YW, Lee H, Kim JY et al (2013) Pluronic-based core/shell nanoparticles for drug delivery and diagnosis. Curr Med Chem 20:3488–3499CrossRefGoogle Scholar
  9. 9.
    Tavano L, Oliviero Rossi C, Picci N, Muzzalupo R (2016) Spontaneous temperature-sensitive Pluronic ® based niosomes: triggered drug release using mild hyperthermia. Int J Pharm 511:703–708.  https://doi.org/10.1016/j.ijpharm.2016.07.064 CrossRefGoogle Scholar
  10. 10.
    Torcello-Gómez A, Wulff-Pérez M, Gálvez-Ruiz MJ et al (2014) Block copolymers at interfaces: interactions with physiological media. Adv Colloid Interf Sci 206:414–427.  https://doi.org/10.1016/j.cis.2013.10.027 CrossRefGoogle Scholar
  11. 11.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212.  https://doi.org/10.1016/s0168-3659(02)00009-3 CrossRefGoogle Scholar
  12. 12.
    Fan W, Wu X, Ding B et al (2012) Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution. Int J Nanomedicine 7:1127–1138.  https://doi.org/10.2147/IJN.S27117 Google Scholar
  13. 13.
    D’Errico G, Paduano L, Khan A (2004) Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b-poly(ethylene oxide)- b-poly(propylene oxide) copolymers of different composition in aqueous mixtures, 1. J Colloid Interface Sci 279:379–390.  https://doi.org/10.1016/j.jcis.2004.06.063 CrossRefGoogle Scholar
  14. 14.
    Barbulescu DM, Burton WA, Salisbury PA (2011) Pluronic F-68: an answer for shoot regeneration recalcitrance in microspore-derived Brassica Napus embryos. Vitr Cell Dev Biol - Plant 47:282–288.  https://doi.org/10.1007/s11627-011-9353-8 CrossRefGoogle Scholar
  15. 15.
    Chang D, Fox R, Hicks E et al (2017) Investigation of interfacial properties of pure and mixed poloxamers for surfactant-mediated shear protection of mammalian cells. Colloids Surfaces B Biointerfaces 156:358–365.  https://doi.org/10.1016/j.colsurfb.2017.05.040 CrossRefGoogle Scholar
  16. 16.
    Singh-Joy SD, McLain VC (2008) Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as use. Int J Toxicol 27(Suppl 2):93–128.  https://doi.org/10.1080/10915810802244595 Google Scholar
  17. 17.
    Kabanov A, Zhu J, Alakhov V (2005) Pluronic block copolymers for gene delivery. Adv Genet 53:231–261.  https://doi.org/10.1016/S0065-2660(05)53009-8 Google Scholar
  18. 18.
    Prhashanna A, Khan SA, Chen SB (2015) Co-micellization behavior in poloxamers: dissipative particle dynamics study. J Phys Chem B 119:572–582.  https://doi.org/10.1021/jp509237r CrossRefGoogle Scholar
  19. 19.
    Fernandez-Tarrio M, Yañez F, Immesoete K et al (2008) Pluronic and tetronic copolymers with polyglycolyzed oils as self-emulsifying drug delivery systems. AAPS PharmSciTech 9:471–479.  https://doi.org/10.1208/s12249-008-9070-8 CrossRefGoogle Scholar
  20. 20.
    Alvarez-Lorenzo C, Rey-Rico A, Sosnik A et al (2012) Poloxamine-based nanomaterials for drug delivery. Front Biosci Elit Ed 337:303–305.  https://doi.org/10.1126/science.1219657 Google Scholar
  21. 21.
    Gonzalez-Lopez J, Alvarez-Lorenzo C, Taboada P et al (2008) Self-associative behavior and drug-solubilizing ability of poloxamine (tetronic) block copolymers. Langmuir 24:10688–10697.  https://doi.org/10.1021/la8016563 CrossRefGoogle Scholar
  22. 22.
    Hersam MC, Antaris AL, Green AA (2012) Separation of single-walled carbon nanotubes by electronic type using block copolymers. US 2012/0025150 A1Google Scholar
  23. 23.
    Rey-Rico A, Silva M, Couceiro J et al (2011) Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2. Eur Cells Mater 21:317–340.  https://doi.org/10.22203/eCM.v021a24 CrossRefGoogle Scholar
  24. 24.
    Simões SMN, Veiga F, Torres-Labandeira JJ et al (2013) Poloxamine-cyclodextrin-simvastatin supramolecular systems promote osteoblast differentiation of mesenchymal stem cells. Macromol Biosci 13:723–734.  https://doi.org/10.1002/mabi.201300017 CrossRefGoogle Scholar
  25. 25.
    Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106.  https://doi.org/10.1016/j.jconrel.2008.04.013 CrossRefGoogle Scholar
  26. 26.
    Simões SMN, Figueiras AR, Veiga F et al (2015) Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 12:297–318.  https://doi.org/10.1517/17425247.2015.960841 CrossRefGoogle Scholar
  27. 27.
    Wang W, Balk M, Deng Z et al (2016) Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J Control Release 242:71–79.  https://doi.org/10.1016/j.jconrel.2016.08.004 CrossRefGoogle Scholar
  28. 28.
    Cagel M, Tesan FC, Bernabeu E et al (2017) Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm.  https://doi.org/10.1016/j.ejpb.2016.12.019
  29. 29.
    Mohr A, Talbiersky P, Korth H-G et al (2007) A new Pyrene-based fluorescent probe for the determination of critical micelle concentrations. J Phys Chem B 111:12985–12992.  https://doi.org/10.1021/jp0731497 CrossRefGoogle Scholar
  30. 30.
    Esteves R, Dikici B, Lehman M et al (2016) Determination of aqueous surfactant solution surface tensions with a surface tensiometer. Beyond Undergrad Res J 1:27–35. http://commons.erau.edu/beyond/vol1/iss1/4
  31. 31.
    Topel Ö, Çakır BA, Budama L, Hoda N (2013) Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 177:40–43.  https://doi.org/10.1016/j.molliq.2012.10.013 CrossRefGoogle Scholar
  32. 32.
    Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317.  https://doi.org/10.1016/j.ejpb.2007.03.022 CrossRefGoogle Scholar
  33. 33.
    Alvarez-Lorenzo C, Gonzalez-Lopez J, Fernandez-Tarrio M et al (2007) Tetronic micellization, gelation and drug solubilization: influence of pH and ionic strength. Eur J Pharm Biopharm 66:244–252.  https://doi.org/10.1016/j.ejpb.2006.10.010 CrossRefGoogle Scholar
  34. 34.
    Rizis G, Van De Ven TGM, Eisenberg A (2014) “Raft” formation by two-dimensional self-assembly of block copolymer rod micelles in aqueous solution. Angew Chemie - Int Ed 53:9000–9003.  https://doi.org/10.1002/anie.201404089 CrossRefGoogle Scholar
  35. 35.
    Venkataraman S, Hedrick JL, Ong ZY et al (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63:1228–1246.  https://doi.org/10.1016/j.addr.2011.06.016 CrossRefGoogle Scholar
  36. 36.
    do Nascimento DF, Arriaga LR, Eggersdorfer M et al (2016) Microfluidic fabrication of Pluronic vesicles with controlled permeability. Langmuir 32:5350–5355.  https://doi.org/10.1021/acs.langmuir.6b01399 CrossRefGoogle Scholar
  37. 37.
    de Graaf AJ, Boere KWM, Kemmink J et al (2011) Looped structure of flowerlike micelles revealed by 1 H NMR Relaxometry and light scattering. Langmuir 27:9843–9848.  https://doi.org/10.1021/la2019605 CrossRefGoogle Scholar
  38. 38.
    Trivedi R, Kompella UB (2010) Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 5:485–505.  https://doi.org/10.2217/nnm.10.10 CrossRefGoogle Scholar
  39. 39.
    Ohno S, Ishihara K, Yusa SI (2016) Formation of Polyion complex (PIC) micelles and vesicles with anionic pH-responsive Unimer micelles and cationic Diblock copolymers in water. Langmuir 32:3945–3953.  https://doi.org/10.1021/acs.langmuir.6b00637 CrossRefGoogle Scholar
  40. 40.
    Li Y, Zhou Y, De B, Li L (2014) Folate-modified pluronic-polyethylenimine and cholic acid polyion complex micelles as targeted drug delivery system for paclitaxel. J Microencapsul 31:805–814.  https://doi.org/10.3109/02652048.2014.940010 CrossRefGoogle Scholar
  41. 41.
    Gaucher G, Satturwar P, Jones MC et al (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158.  https://doi.org/10.1016/j.ejpb.2010.06.007 CrossRefGoogle Scholar
  42. 42.
    Sotoudegan F, Amini M, Faizi M, Aboofazeli R (2016) Nimodipine-loaded Pluronic(®) block copolymer micelles: preparation, characterization, in-vitro and in-vivo studies. Iran J Pharm Res IJPR 15:641–661Google Scholar
  43. 43.
    Mourya VK, Inamdar N, Nawale RB, Kulthe SS (2011) Polymeric micelles: general considerations and their applications. Indian J pharm. Educ Res 45:128–138Google Scholar
  44. 44.
    Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729.  https://doi.org/10.1016/j.nano.2010.05.005 CrossRefGoogle Scholar
  45. 45.
    Gaucher G, Dufresne MH, Sant VP et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188.  https://doi.org/10.1016/j.jconrel.2005.09.034 CrossRefGoogle Scholar
  46. 46.
    Pereira P, Barreira M, Queiroz JA et al (2017) Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin Drug Deliv 14:353–371.  https://doi.org/10.1080/17425247.2016.1214567 CrossRefGoogle Scholar
  47. 47.
    Keles E, Song Y, Du D et al (2016) Recent progress in nanomaterials for gene delivery applications. Biomater Sci 4:1291–1309.  https://doi.org/10.1039/C6BM00441E CrossRefGoogle Scholar
  48. 48.
    Khodabandehloo A, Chen DDY (2017) Particle sizing methods for the detection of protein aggregates in biopharmaceuticals. Bioanalysis 9:313–326.  https://doi.org/10.4155/bio-2016-0269 CrossRefGoogle Scholar
  49. 49.
    Bhattacharjee S (2016) DLS and zeta potential ? What they are and what they are not? J Control Release 235:337–351.  https://doi.org/10.1016/j.jconrel.2016.06.017 CrossRefGoogle Scholar
  50. 50.
    Eddleston MD, Bithell EG, Jones W (2010) Transmission electron microscopy of pharmaceutical materials. J Pharm Sci 99:4072–4083.  https://doi.org/10.1002/jps.22220 CrossRefGoogle Scholar
  51. 51.
    Dini L, Panzarini E, Mariano S et al (2015) Microscopies at the nanoscale for nano-scale drug delivery systems. Curr Drug Targets 16:1512–1530.  https://doi.org/10.2174/1389450116666150531160851 CrossRefGoogle Scholar
  52. 52.
    Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm bioallied Sci 3:39–59.  https://doi.org/10.4103/0975-7406.76463 CrossRefGoogle Scholar
  53. 53.
    Higashi K, Ueda K, Moribe K (2016) Recent progress of structural study of polymorphic pharmaceutical drugs. Adv Drug Deliv Rev:1–8.  https://doi.org/10.1016/j.addr.2016.12.001
  54. 54.
    Diehl B (2008) Principles in NMR spectroscopy. In: NMR Spectrosc. Pharm. Anal. Elsevier, pp 1–41.  https://doi.org/10.1016/B978-0-444-53173-5.00001-9
  55. 55.
    Domingo C, Saurina J (2012) An overview of the analytical characterization of nanostructured drug delivery systems: towards green and sustainable pharmaceuticals: a review. Anal Chim Acta 744:8–22.  https://doi.org/10.1016/j.aca.2012.07.010 CrossRefGoogle Scholar
  56. 56.
    Ganzoury MA, Allam NK, Nicolet T, All C (2015) Introduction to Fourier transform infrared spectrometry. Renew Sust Energ Rev 50:1–8.  https://doi.org/10.1016/j.rser.2015.05.073 CrossRefGoogle Scholar
  57. 57.
    Sversut RA, da Silva AA, Cardoso TFM et al (2017) A critical review of properties and analytical methods for the determination of Oxytetracyline in biological and pharmaceutical matrices. Crit Rev Anal Chem 47:154–171.  https://doi.org/10.1080/10408347.2016.1236673 CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Liu Y, Sen S et al (2015) Charged group surface accessibility determines micelleplexes formation and cellular interaction. Nano 7:7559–7564.  https://doi.org/10.1039/C5NR00095E Google Scholar
  59. 59.
    Chitkara D, Singh S, Mittal A (2016) Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 7:245–255.  https://doi.org/10.4155/tde-2015-0003 CrossRefGoogle Scholar
  60. 60.
    Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:1–26.  https://doi.org/10.3389/fphar.2014.00077 CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Buhrman JS, Liu Y et al (2016) Reducible Micelleplexes are stable systems for anti-miRNA delivery in cerebrospinal fluid. Mol Pharm 13:1791–1799.  https://doi.org/10.1021/acs.molpharmaceut.5b00933 CrossRefGoogle Scholar
  62. 62.
    Gary DJ, Lee H, Sharma R et al (2011) Influence of Nano-carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: Polyplexes vs Micelleplexes. ACS Nano 5:3493–3505.  https://doi.org/10.1021/nn102540y CrossRefGoogle Scholar
  63. 63.
    Jafari M, Soltani M, Naahidi S et al (2012) Nonviral approach for targeted nucleic acid delivery. Curr Med Chem 19:197–208.  https://doi.org/10.2174/092986712803414141 CrossRefGoogle Scholar
  64. 64.
    Kim J, Wilson DR, Zamboni CG, Green JJ (2015) Targeted polymeric nanoparticles for cancer gene therapy. J Drug Target 23:627–641.  https://doi.org/10.3109/1061186X.2015.1048519 CrossRefGoogle Scholar
  65. 65.
    Jin L, Zeng X, Liu M et al (2014) Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4:240–255.  https://doi.org/10.7150/thno.6914 CrossRefGoogle Scholar
  66. 66.
    Nayerossadat N, Ali P, Maedeh T (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27.  https://doi.org/10.4103/2277-9175.98152 CrossRefGoogle Scholar
  67. 67.
    Wang M, Wu B, Tucker JD et al (2016) Poly(ester amine) constructed from polyethylenimine and pluronic for gene delivery in vitro and in vivo. Drug Deliv:1–10.  https://doi.org/10.3109/10717544.2016.1162877
  68. 68.
    U.S. National Institutes of Health (2000) ClinicalTrials.gov. https://clinicaltrials.gov/ct2/home. Accessed 16 May 2017
  69. 69.
    Valle JW, Armstrong A, Newman C et al (2011) A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investig New Drugs 29:1029–1037.  https://doi.org/10.1007/s10637-010-9399-1 CrossRefGoogle Scholar
  70. 70.
    Nguyen KT, Vinh Le D, Ho Do D, Huan Le Q (2016) Development of chitosan graft pluronic ® F127 copolymer nanoparticles containing DNA aptamer for paclitaxel delivery to treat breast cancer cells. Adv Nat Sci Nanosci Nanotechnol 7:25018.  https://doi.org/10.1088/2043-6262/7/2/025018 CrossRefGoogle Scholar
  71. 71.
    Roma MI, Hocht C, Chiappetta DA et al (2015) Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood–brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine 10:2325–2337.  https://doi.org/10.2217/nnm.15.77 CrossRefGoogle Scholar
  72. 72.
    Cagel M, Bernabeu E, Gonzalez L et al (2017) Mixed micelles for encapsulation of doxorubicin with enhanced in?vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®. Biomed Pharmacother 95:894–903.  https://doi.org/10.1016/j.biopha.2017.09.006 CrossRefGoogle Scholar
  73. 73.
    Malinovskaya Y, Melnikov P, Baklaushev V et al (2017) Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm 524:77–90.  https://doi.org/10.1016/j.ijpharm.2017.03.049 CrossRefGoogle Scholar
  74. 74.
    Chiarante N, García Vior MC, Awruch J et al (2017) Phototoxic action of a zinc(II) phthalocyanine encapsulated into poloxamine polymeric micelles in 2D and 3D colon carcinoma cell cultures. J Photochem Photobiol B Biol 170:140–151.  https://doi.org/10.1016/j.jphotobiol.2017.04.009 CrossRefGoogle Scholar
  75. 75.
    Kobayashi K, Wei J, Iida R et al (2014) Surface engineering of nanoparticles for therapeutic applications. Polymer J 46:460–468.  https://doi.org/10.1038/pj.2014.40 CrossRefGoogle Scholar
  76. 76.
    Liu K, Wang X, Fan W et al (2012) Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector. Int J Nanomedicine 7:1149–1162.  https://doi.org/10.2147/IJN.S28819 CrossRefGoogle Scholar
  77. 77.
    Varshosaz J, Taymouri S, Hassanzadeh F et?al (2015) Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. Biomed Res Int.  https://doi.org/10.1155/2015/746093
  78. 78.
    Alakhova DY, Kabanov AV (2014) Pluronics and MDR reversal: an update. Mol Pharm 11:2566–2578.  https://doi.org/10.1021/mp500298q CrossRefGoogle Scholar
  79. 79.
    Mittal KL (2015) Progress in adhesion and adhesives. Prog Adhes Adhes.  https://doi.org/10.1002/9781119162346
  80. 80.
    Liu H, Li W, Liu C et al (2016) Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti 6 al 4?V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication 8:45012.  https://doi.org/10.1088/1758-5090/8/4/045012 CrossRefGoogle Scholar
  81. 81.
    Savarino V, Pace F, Scarpignato C (2017) Randomised clinical trial: mucosal protection combined with acid suppression in the treatment of non-erosive reflux disease - efficacy of Esoxx, a hyaluronic acid-chondroitin sulphate based bioadhesive formulation. Aliment Pharmacol Ther 45:631–642.  https://doi.org/10.1111/apt.13914 CrossRefGoogle Scholar
  82. 82.
    Liu Y, Yang F, Feng L et al (2017) In?vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B 7:502–509.  https://doi.org/10.1016/j.apsb.2017.03.003 CrossRefGoogle Scholar
  83. 83.
    Ci L, Huang Z, Liu Y et al (2017) Amino-functionalized poloxamer 407 with both mucoadhesive and thermosensitive properties: preparation, characterization and application in a vaginal drug delivery system. Acta Pharm Sin B 7:593–602.  https://doi.org/10.1016/j.apsb.2017.03.002 CrossRefGoogle Scholar
  84. 84.
    Levy M, Wang MY, Armstrong JK, et al (2017) Bone hemostasis method and materials. US Patent 9616150 B2Google Scholar
  85. 85.
    Lee RC, Kuo A, Hyldkrog HG et al (2017) Compositions and methods for refolding of denatured proteins. US Patent 9572340 B2Google Scholar
  86. 86.
    Rodeheaver G, Katz A (2017) Compositions for treating biofilms and methods for using same. US Patent 9603966 B2Google Scholar
  87. 87.
    Cutler ET (1999) Dental products to treat and prevent periodontal disease. US patent 5900230 aGoogle Scholar
  88. 88.
    Davis S, Illum L, Daudali B (2002) Polymer compositions for polynucleotide delivery. US Patent 20020044972 A1Google Scholar
  89. 89.
    Xia E, Heiler DJ (2001) Treatment of contact lenses with aqueous solution comprising a biguanide disinfectant stabilized by a poloxamine. US Patent 6309596 B1Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Mauro Almeida
    • 1
  • Mariana Magalhães
    • 1
    • 2
  • Francisco Veiga
    • 1
    • 2
  • Ana Figueiras
    • 1
    • 2
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  2. 2.REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations