Advertisement

Journal of Polymer Research

, 24:233 | Cite as

Non-destructive monitoring of ethylene vinyl acetate crosslinking in PV-modules by luminescence spectroscopy

  • Jan Caspar Schlothauer
  • Clea Peter
  • Christina Hirschl
  • Gernot Oreski
  • Beate RöderEmail author
ORIGINAL PAPER

Abstract

This work reports on the prospects of using luminescence spectroscopy as a non-destructive method for the characterization of ethylene vinyl acetate copolymer (EVA) crosslinking in photovoltaic (PV) modules. Luminescence has the potential to be easily applied in-line for monitoring purposes, e.g. during manufacturing. We investigate the correlation of luminescence, Raman spectroscopy and differential scanning calorimetry with the EVA crosslinking. We show that all these methods, including the luminescence method, show a good correlation with the hold time during the lamination process. Furthermore, time-dependent luminescence measurements are introduced. These make use of the fact that the luminescence decreases upon the ultraviolet irradiation during the measurement. In contrast to steady-state luminescence, this facilitates measurements that are inherently less dependent on possible interfering signal artifacts, as these may occur in industrial PV modules due to other components of the PV module.

Keywords

Optical spectroscopy Luminescence Raman Non-destructive Ethylene vinyl acetate Eva Photovoltaic module Pv module Crosslinking 

Notes

Acknowledgements

The part of this work conducted at the Humboldt-Universität zu Berlin was part of the project LAURA, funded by the Bundesministerium für Wirtschaft und Energie (BMWi), FKZ: 0325716E, which is gratefully acknowledged. The part of this work conducted at CTR and PCCL was part of the Austrian “Energy Research Program” project INFINITY, funded by the Austrian Climate and Energy Fonds and the Austrian Research Promotion Agency (FFG), both are gratefully acknowledged.

Supplementary material

10965_2017_1409_MOESM1_ESM.pdf (170 kb)
ESM 1 (PDF 169 kb)

References

  1. 1.
    Hirschl C, Biebl-Rydlo M, DeBiasio M, Mühleisen W, Neumaier L, Scherf W, Oreski G, Eder GC, Chernev BS, Schwab W, Kraft M (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study. Sol Energy Mater Sol Cells 116:203–218CrossRefGoogle Scholar
  2. 2.
    Czanderna AW, Pern FJ (1996) Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review. Sol Energy Mater Sol Cells 43:101–181CrossRefGoogle Scholar
  3. 3.
    Morlier A, Klotz S, Sczuka S, Kunze I, Schaumann I, Blankemeyer S, Siegert M, Döring T, Alshuth T, Giese U, Denz M, Köntges M (2013) Influence of the curing state of ethylene-vinyl acetate on photovoltaic modules aging. 28th European photovoltaic solar energy conference and exhibition, pp 2832–2837Google Scholar
  4. 4.
    Kurtz S, Wohlgemuth J, Sample T, Yamamichi M, Amano J, Hacke P, Kempe M, Kondo M, Doi T, Otani K (2011) Ensuring quality of PV modules, in: 2011 37th IEEE photovoltaic specialists conference (PVSC), 842–847Google Scholar
  5. 5.
    Grabmayer K (2010) Physikalische Charakterisierung des Vernetzungsgrades von EVA Einbettmaterialien für Solarzellen. Masters Thesis, LeobenGoogle Scholar
  6. 6.
    Wallner GM, Grabmayer K, Oreski G (2010) Physical characterization of EVA embedding materials for solar cells. 25th European photovoltaic solar energy conference and exhibition, pp 4033–4035Google Scholar
  7. 7.
    Jurga J, Voelkel A, Strzemiecka B (2009) Application of different analytical methods used in the study of the cross-linking of resins in intermediate-product used in manufacturing of abrasive articles. J Appl Polym Sci 112:3305–3312CrossRefGoogle Scholar
  8. 8.
    ASTM Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics, ASTM International, West Conshohocken, PAGoogle Scholar
  9. 9.
    Kajari-Schröder S, Eitner U, Oprisoni C, Alshuth T, Köntges M, Brendel R (2010) Modelling the curing dynamics of ethylene-vinyl acetate, 25th European photovoltaic solar energy conferenceGoogle Scholar
  10. 10.
    Hidalgo M, Medlege F, Vite M, Corfias-Zuccalli C, Voarino P, Gonzalez-Leon J (2011) A new DSC method for the quality control of PV modules: simple and quick determination of the degree of crosslinking of EVA encapsulants, photovoltaics international 130–140Google Scholar
  11. 11.
    Hidalgo M, Thil D, Dugué C (2013) Assessment of the cross-linking degree of EVA PV encapsulants, photovoltaics international 98–103Google Scholar
  12. 12.
    Stark W, Jaunich M, Bohmeyer W, Lange K (2012) Investigation of the crosslinking behaviour of ethylene vinyl acetate (EVA) for solar cell encapsulation by rheology and ultrasound. Polym Test 31:904–908CrossRefGoogle Scholar
  13. 13.
    Xia Z, Cunningham DW, Wohlgemuth JH (2009) A new method for measuring crosslinking density in ethylene vinyl acetate-based encapsulant, Photovoltaics InternationalGoogle Scholar
  14. 14.
    Schubnell M (2010) Investigation of the curing reaction of EVA by DSC and DMA. Photovoltaics International 2010:131–137Google Scholar
  15. 15.
    Ogier S, Vidal C, Chapron D, Bourson P, Royaud I, Ponçot M, Vite M, Hidalgo M (2017) A comparative study of calorimetric methods to determine the crosslinking degree of the ethylene-co-vinyl acetate polymer used as a photovoltaic encapsulant. J Polym Sci B Polym Phys 55:866–876CrossRefGoogle Scholar
  16. 16.
    Mühleisen W, Biebl-Rydlo M, Spielberger M (2011) Determining the degree of EVA cross-linking in assembled PV modules acoustically and in-situ, in: 26th European photovoltaic solar energy conference and exhibitionGoogle Scholar
  17. 17.
    Schulze S (2010) DE10201002520484Google Scholar
  18. 18.
    Lloyd J, Christian T, Doble D, Mickiewicz RA (2011) Non-destructive measurement of the degree of cross-linking of EVA solar module encapsulation. 37th IEEE photovoltaic specialists conference (PVSC), pp 2273–2278Google Scholar
  19. 19.
    Li H-Y, Perret-Aebi L-E, Théron R, Ballif C, Luo Y (2013) Lange, Ronald F. M., optical transmission as a fast and non-destructive tool for determination of ethylene-co-vinyl acetate curing state in photovoltaic modules, Prog. Photovolt. Res Appl 21:187–194Google Scholar
  20. 20.
    Li H-Y, Luo Y, Ballif C, Perret-Aebi L-E (2015) Fast and nondestructive detection on the EVA gel content in photovoltaic modules by optical reflection. IEEE J Photovoltaics 5:759–765CrossRefGoogle Scholar
  21. 21.
    Doble D, Mickiewicz RA, Lloyd J, Jaeger M, Hartman WF (2012) US2012/0118071 A1Google Scholar
  22. 22.
    Chernev BS, Hirschl C, Eder GC (2013) Non-destructive determination of ethylene vinyl acetate cross-linking in Photovoltaic (PV) Modules by Raman Spectroscopy. Appl. Spectrosc 67:1296–1301CrossRefGoogle Scholar
  23. 23.
    Hirschl C, Neumaier L, Mühleisen W, DeBiasio M, Leitner R, Zauner M, Oreski G, Rauschenbach A, Eder GC, Seufzer S, Berge C, Rüland E, Kraft M (2015) In-line quality control device for the degree of crosslinking of the embedding material ethylene vinyl acetate in PV modules. 5 pages / 31st European photovoltaic solar energy conference and exhibition; 2430-2434Google Scholar
  24. 24.
    Hirschl C, Neumaier L, Mühleisen W, Zauner M, Oreski G, Eder GC, Seufzer S, Berge C, Rüland E, Kraft M (2016) In-line determination of the degree of crosslinking of ethylene vinyl acetate in PV modules by Raman spectroscopy. Sol Energy Mater Sol Cells 152:10–20CrossRefGoogle Scholar
  25. 25.
    Schlothauer JC, Jungwirth S, Röder B, Köhl M (2010) Fluorescence imaging a powerful tool for the investigation of polymer degradation in PV modules, Photovoltaics International 149–154Google Scholar
  26. 26.
    Schlothauer JC, Jungwirth S, Köhl M, Röder B (2012) Degradation of the encapsulant polymer in outdoor weathered photovoltaic modules: spatially resolved inspection of EVA ageing by fluorescence and correlation to electroluminescence. Sol Energy Mater Sol Cells 102:75–85CrossRefGoogle Scholar
  27. 27.
    Schlothauer JC, Röder B, Prospects of 2D-luminescence spectroscopy for aging investigations of the embedding EVA polymer in PV modules: Revealing DLO conditions, in: C.C. White, K.M. White, J. Pickett (Eds.), Service Life Prediction of Polymers and Plastics Exposed to Outdoor WeatheringGoogle Scholar
  28. 28.
    Schlothauer JC, Röder B (2017) Prospects of 2D-luminescence spectroscopy for aging investigations of the embedding EVA polymer in PV modules: revealing DLO conditions. In: White CC, White KM, Pickett J (eds) Service life prediction of polymers and plastics exposed to outdoor weathering, William Andrew, Oxford, pp 161–184Google Scholar
  29. 29.
    Schlothauer JC, Grabmayer K, Wallner GM, Röder B (2016) Correlation of spatially resolved photoluminescence and viscoelastic mechanical properties of encapsulating EVA in differently aged PV modules, Prog. Photovolt. Res Appl 24:855–870Google Scholar
  30. 30.
    Schlothauer JC, Grabmayer K, Hintersteiner I, Wallner GM, Röder B (2017) Non-destructive 2D-luminescence detection of EVA in aged PV modules: correlation to calorimetric properties, additive distribution and a clue to aging parameters. Sol Energy Mater Sol Cells:307–317Google Scholar
  31. 31.
    Steffen R, Wallner GM, Rekstad J, Röder B (2016) General characteristics of photoluminescence from dry heat aged polymeric materials. Polym Degrad Stab 134:49–59Google Scholar
  32. 32.
    Schlothauer JC, Ralaiarisoa RM, Morlier A, Köntges M, Röder B (2014) Determination of the cross-linking degree of commercial ethylene-vinyl-acetate polymer by luminescence spectroscopy. J Polym Res 21:457–462Google Scholar
  33. 33.
    Morlier A, Köntges M, Blankemeyer S, Kunze I (2014) Contact-free determination of ethylene vinyl acetate crosslinking in PV modules with fluorescence emission. Energy Procedia 55:348–355CrossRefGoogle Scholar
  34. 34.
    Oreski G, Rauschenbach A, Hirschl C, Kraft M, Eder GC, Pinter G (2017) Crosslinking and post-crosslinking of ethylene vinyl acetate in photovoltaic modules. J Appl Polym Sci 134:101CrossRefGoogle Scholar
  35. 35.
    Hirschl C, Neumaier L, Puchberger S, Mühleisen W, Oreski G, Eder GC, Frank R, Tranitz M, Schoppa M, Wendt M, Bogdanski N, Plösch A, Kraft M (2015) Determination of the degree of ethylene vinyl acetate crosslinking via Soxhlet extraction: gold standard or pitfall? Sol Energy Mater Sol Cells 143:494–502CrossRefGoogle Scholar
  36. 36.
    Steffen R, Setyamukti H, Wallner G, Geretschläger K, Röder B (2017) Kinetics of degradation-induced polymer luminescence: polyamide under dry heat exposure. Polym Degrad Stab 140:114–125Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Jan Caspar Schlothauer
    • 1
  • Clea Peter
    • 1
  • Christina Hirschl
    • 2
  • Gernot Oreski
    • 3
  • Beate Röder
    • 1
    Email author
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.CTR Carinthian Tech Research AGVillachAustria
  3. 3.PCCL Polymer Competence Center LeobenLeobenAustria

Personalised recommendations