Journal of Polymer Research

, 24:217 | Cite as

Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate)

  • Miwa Suzuki
  • Yuya Tachibana
  • Jun-ichiro Kazahaya
  • Reika Takizawa
  • Fumihiro Muroi
  • Ken-ichi Kasuya
ORIGINAL PAPER
Part of the following topical collections:
  1. Topical Collection on Bio-Based Polymers

Abstract

A chemosynthetic aliphatic polyester, poly(ethylene succinate) (PESu), was degraded by a poly(3-hydroxybutyrate) (P(3HB)) depolymerase in vitro. While P(3HB) exhibited good biodegradability in all environments, PESu hardly underwent biodegradation in a marine environment. To understand the difference in environmental degradability between PESu and P(3HB), we investigated the distribution of P(3HB)- and PESu-degrading microbes in various environments. PESu-degrading microbes were never detected in marine environments. PESu-degrading bacteria isolated from various environments in this study belonged to the phyla Firmicutes and Proteobacteria. Most PESu-degrading bacterial isolates could not degrade P(3HB), suggesting that PESu was not degraded by P(3HB) depolymerase in actual environments. In addition, all bacterial isolates that were screened for P(3HB) degrading activity from various environments in this study did not degrade PESu, suggesting that PESu does not induce P(3HB) depolymerase in their bacteria and P(3HB)-degrading bacteria are not involved in biodegradation of PESu in actual environments. Taken together, these results could be related with the low biodegradability of PESu in marine environments.

Keywords

Poly(ethylene succinate) Poly(3-hydroxybutyrate) Biodegradable plastics Environmental degradability Fungi 

Supplementary material

10965_2017_1383_MOESM1_ESM.docx (44 kb)
ESM 1 (DOCX 44 kb)

References

  1. 1.
    Eerkes-Medrano D, Thompson RC, Aldridge DC (2015). Water Res 75:63–82CrossRefGoogle Scholar
  2. 2.
    Fujimaki T (1998). Polym Degrad Stabil 59:209–214CrossRefGoogle Scholar
  3. 3.
    Anderson AJ, Dawes EA (1990). Microbiol Rev 54:450–472Google Scholar
  4. 4.
    Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, Oroudjev E, Hansma H, Iwata T, Doi Y, Saito T, Miki K (2006). J Mol Biol 356:993–1004CrossRefGoogle Scholar
  5. 5.
    Ishii N, Inoue Y, Shimada K, Tezuka Y, Mitomo H, Kasuya K (2007). Polym Degrad Stabil 92:44–52CrossRefGoogle Scholar
  6. 6.
    Kasuya K, Ohura T, Masuda K, Doi Y (1999). Int J Biol Macromol 24:329–336CrossRefGoogle Scholar
  7. 7.
    Luzier WD (1992). P Natl Acad Sci USA 89:839–842CrossRefGoogle Scholar
  8. 8.
    Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y (1998). Polym Degrad Stabil 59:327–332CrossRefGoogle Scholar
  9. 9.
    Tezuka Y, Ishii N, Kasuya K, Mitomo H (2004). Polym Degrad Stabil 84:115–121CrossRefGoogle Scholar
  10. 10.
    Tansengco ML, Tokiwa Y (1998). World J Microbiol Biot 14:133–138CrossRefGoogle Scholar
  11. 11.
    Nishida H, Tokiwa Y (1993). J Environ Polym Degr 1:227–233CrossRefGoogle Scholar
  12. 12.
    Saitou N, Nei M (1987). Mol Biol Evol 4:406–425Google Scholar
  13. 13.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  14. 14.
    Jung J, Baek JH, Park W (2010). J Bacteriol 18:4794–4795CrossRefGoogle Scholar
  15. 15.
    Kim SB, Falconer C, Williams E, Goodfellow M (1998). Int J Syst Evol Micr 48:59–68Google Scholar
  16. 16.
    Kasuya K, Mitomo H, Nakahara M, Akiba A, Kudo T, Doi Y (2000). Biomacromolecules 1:194–201CrossRefGoogle Scholar
  17. 17.
    Mergaert J, Anderson C, Wouters A, Swings J (1994). J Environ Polym Degr 3:177–183CrossRefGoogle Scholar
  18. 18.
    Nishida H, Suzuki S, Tokiwa Y (1998). J Environ Polym Degr 6:43–58CrossRefGoogle Scholar
  19. 19.
    Matavulj M, Molitoris HP (1992). FEMS Microbiol Rev 9:323–331CrossRefGoogle Scholar
  20. 20.
    Matavuly M, Molitoris HP (2016). Biologia Serbica 37:49–63Google Scholar
  21. 21.
    Schippers A, Kock D, Höft C, Köweker G, Siegert M (2012). Front Microbiol 3:1–11CrossRefGoogle Scholar
  22. 22.
    Çolak A, Sisik D, Saglam N, Güner S, Çanakçi S, Beldüz AO (2005). Bioresour Technol 96:625–631CrossRefGoogle Scholar
  23. 23.
    Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contopoulos R (1965). J Bacteriol 90:1455–1466Google Scholar
  24. 24.
    Ghanem NB, Mabrouk MES, Sabry SA, El-Badan DES (2005). J Gen Appl Microbiol 51:151–158CrossRefGoogle Scholar
  25. 25.
    Jendrossek D, Schirmer A, Schlegel HG (1996). Appl Microbiol Biot 5-6:451–463CrossRefGoogle Scholar
  26. 26.
    Kobayashi T, Sugiyama A, Kawase Y, Saito T, Mergaert J, Swings J (1999). J Polym Environ 7:9–18CrossRefGoogle Scholar
  27. 27.
    Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993). Appl Environ Microb 59:3233–3238Google Scholar
  28. 28.
    Mergaert J, Wouters A, Swings J, Anderson C (1995). Can J Microbiol 41:154–159CrossRefGoogle Scholar
  29. 29.
    Mergaert J, Swings J (1996). J Ind Microbiol Biot 17:463–469CrossRefGoogle Scholar
  30. 30.
    Nojima S, Mineki S, Iida M (1996). J Ferment Bioeng 81:72–75CrossRefGoogle Scholar
  31. 31.
    Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998). Appl Environ Microb 12:5008–5011Google Scholar
  32. 32.
    Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Bá Xuân B, Việt Dũng V, Gitelson II (2010). Polym Degrad Stabil 95:2350–2359CrossRefGoogle Scholar
  33. 33.
    Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S (1982). Eur J Biochem 124:71–77CrossRefGoogle Scholar
  34. 34.
    Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya K (2016). Polym Degrad Stabil 129:268–274CrossRefGoogle Scholar
  35. 35.
    Hoang KC, Lee CY, Tseng M, Chu WS (2007). World J Microb Biot 2:201–205CrossRefGoogle Scholar
  36. 36.
    Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012). Environ Sci Pollut R 19:2115–2124CrossRefGoogle Scholar
  37. 37.
    Nawaz A, Hasan F, Shah AA (2015). FEMS Microbiol Lett 362:1–7CrossRefGoogle Scholar
  38. 38.
    Nakajima-Kambe T, Toyoshima K, Saito C, Takaguchi H, Akutsu-Shigeno Y, Sato M, Miyama K, Nomura N, Uchiyama H (2009). J Biosci Bioeng 108:513–516CrossRefGoogle Scholar
  39. 39.
    Davis DH, Stanier RY, Doudoroff M, Mandel M (1970). Arch Mikrobiol 70:1–13CrossRefGoogle Scholar
  40. 40.
    Syutsubo K, Hideo K, Shigeaki H (2001). Environ Microbiol 3:371–379CrossRefGoogle Scholar
  41. 41.
    White PJ (1972). Microbiology+ 71:505–514Google Scholar
  42. 42.
    Kageyama A, Takahashi Y, Matsuo Y, Adachi K, Kasai H, Shizuri Y, Omura S (2007). Actinomycetologica 2:53–58CrossRefGoogle Scholar
  43. 43.
    Miyadoh S, Amano S, Tohyama H, Shomura T (1990). Microbiology+ 136:1905–1913Google Scholar
  44. 44.
    Holloway BW, Egan JB, Monk M (1960) Aust J. Exp Biol Med 2:321–330CrossRefGoogle Scholar
  45. 45.
    Park HY, Jeon CO (2013). Int J Syst Evol Micr 63:4683–4690CrossRefGoogle Scholar
  46. 46.
    Mukai K, Yamada K, Doi Y (1993). Polym Degrad Stabil 41:85–91CrossRefGoogle Scholar
  47. 47.
    Mukai K, Yamada K, Doi Y (1994). Polym Degrad Stabil 43:319–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of Molecular Science, Graduate School of Science and TechnologyGunma UniversityKiryuJapan

Personalised recommendations