Skip to main content
Log in

Synthesis and characterization of poly(butylene succinate)-reduced graphene oxide composite through in-situ melt polymerization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) was selected as a reinforcing filler to be incorporated in Polybutylene succinate (PBS) through in-situ melt polymerization where enhancing and interesting properties were observed. Dispersed rGO showed no chemical interaction with PBS matrix by showing constant glass transition temperature (Tg) and melting temperature (Tm) but clear indication of physical interaction was observed in increased tensile strength and elongation. With only 0.1 wt% of rGO, the tensile strength and the elongation at break were increased by 80% and 373%, respectively, compared to neat PBS. Regarding crystallization behavior of synthesized composites, thermal conducting effect of rGO was revealed to have an impact on crystallization process. Furthermore, through wide-angle X-ray diffraction (XRD), the rGO functioned as a defect during crystallization and affected (021) and (020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly (butylene succinate)(PBS) and its copolyesters. Biomacromolecules 2(2):605–613

    Article  CAS  Google Scholar 

  2. Yoshie N, Oike Y, Kasuya K-i, Doi Y, Inoue Y (2002) Change of surface structure of poly (3-hydroxybutyrate) film upon enzymatic hydrolysis by PHB depolymerase. Biomacromolecules 3(6):1320–1326

    Article  CAS  Google Scholar 

  3. Kobori Y, Iwata T, Doi Y, Abe H (2004) Synthesis, solid-state structure, and surface properties of end-capped poly (L-lactide). Biomacromolecules 5(2):530–536

    Article  CAS  Google Scholar 

  4. Ihn K, Yoo E, Im S (1995) Structure and morphology of poly (tetramethylene succinate) crystals. Macromolecules 28(7):2460–2464

    Article  CAS  Google Scholar 

  5. Ahn JS, Kang SM, Kim MK, Kim YJ, Yoon KC, Park OO (2016) Effect of alicyclic monomers on thermal properties of transparent biodegradable polyesters. Macromol Res 24(7):609–616

    Article  CAS  Google Scholar 

  6. Fertier L, Ibert M, Buffe C, Saint-Loup R, Joly-Duhamel C, Robin J-J, Giani O (2016) New biosourced UV curable coatings based on isosorbide. Prog Org Coat 99:393–399

    Article  CAS  Google Scholar 

  7. Lee H, Koo JM, Sohn D, Kim I-S, Im SS (2016) High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization. RSC Adv 6(46):40383–40388

    Article  CAS  Google Scholar 

  8. Hwang SY, Yoo ES, Im SS (2012) The synthesis of copolymers, blends and composites based on poly (butylene succinate). Polym J 44(12):1179–1190

    Article  CAS  Google Scholar 

  9. Tan B, Bi S, Emery K, Sobkowicz MJ (2017) Bio-based poly (butylene succinate-co-hexamethylene succinate) copolyesters with tunable thermal and mechanical properties. Eur Polym J 86:162–172

    Article  CAS  Google Scholar 

  10. Dai X, Qiu Z (2017) Crystallization kinetics, morphology, and hydrolytic degradation of novel biobased poly (butylene succinate-co-decamethylene succinate) copolyesters. Polym Degrad Stab 137:197–204

    Article  CAS  Google Scholar 

  11. Gan Z, Abe H, Doi Y (2001) Crystallization, melting, and enzymatic degradation of biodegradable poly (butylene succinate-co-14 mol ethylene succinate) copolyester. Biomacromolecules 2(1):313–321

    Article  CAS  Google Scholar 

  12. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly (lactic acid)/poly (butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106(3):1813–1820

    Article  CAS  Google Scholar 

  13. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly (L-lactide) with poly (butylene succinate-co-L-lactate) and poly (butylene succinate). Polymer 47(10):3557–3564

    Article  CAS  Google Scholar 

  14. Park JW, Im SS (2002) Phase behavior and morphology in blends of poly (L-lactic acid) and poly (butylene succinate). J Appl Polym Sci 86(3):647–655

    Article  CAS  Google Scholar 

  15. Kim HS, Yang HS, Kim HJ (2005) Biodegradability and mechanical properties of agro-flour–filled polybutylene succinate biocomposites. J Appl Polym Sci 97(4):1513–1521

    Article  CAS  Google Scholar 

  16. Zhu N, Ye M, Shi D, Chen M (2017) Reactive compatibilization of biodegradable poly (butylene succinate)/spirulina microalgae composites. Macromol Res 25(2):165–171

    Article  CAS  Google Scholar 

  17. Li Y-D, Li H, Du A-K, Wang M, Zeng J-B (2017) Morphology and isothermal crystallization of graphene oxide reinforced biodegradable poly (butylene succinate). Polym Test 59:1–9

    Article  CAS  Google Scholar 

  18. Cao Z, Lu Y, Zhang C, Zhang Q, Zhou A, Hu Y, Wu D, Tao G, Gong F, Ma W (2017) Effects of the chain-extender content on the structure and performance of poly (lactic acid)–poly (butylene succinate)–microcrystalline cellulose composites. J Appl Polym Sci 134:22

    Google Scholar 

  19. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(05):1179–1184

    Article  CAS  Google Scholar 

  20. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8(05):1185–1189

    Article  CAS  Google Scholar 

  21. Xu S, Wen M, Li J, Guo S, Wang M, Du Q, Shen J, Zhang Y, Jiang S (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870

    Article  CAS  Google Scholar 

  22. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377

    Article  CAS  Google Scholar 

  23. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    Article  CAS  Google Scholar 

  24. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134

    Article  CAS  Google Scholar 

  25. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  26. Song W-L, Cao M-S, Lu M-M, Bi S, Wang C-Y, Liu J, Yuan J, Fan L-Z (2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66:67–76

    Article  CAS  Google Scholar 

  27. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  28. Luo Y-B, Cheng J-S, Ma Q, Feng Y-Q, Li J-H (2011) Graphene-polymer composite: extraction of polycyclic aromatic hydrocarbons from water samples by stir rod sorptive extraction. Anal Methods 3(1):92–98

    Article  CAS  Google Scholar 

  29. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  30. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  31. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845

    Article  CAS  Google Scholar 

  32. Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly (butylene succinate) nanocomposites. Compos Sci Technol 72(1):1–6

    Article  CAS  Google Scholar 

  33. Jin T-X, Liu C, Zhou M, Chai S-g, Chen F, Fu Q (2015) Crystallization, mechanical performance and hydrolytic degradation of poly (butylene succinate)/graphene oxide nanocomposites obtained via in situ polymerization. Compos A: Appl Sci Manuf 68:193–201

    Article  CAS  Google Scholar 

  34. Kim F, Luo J, Cruz-Silva R, Cote LJ, Sohn K, Huang J (2010) Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 20(17):2867–2873

    Article  CAS  Google Scholar 

  35. Eom W, Kim A, Park H, Kim H, Han TH (2016) Graphene-mimicking 2D porous Co3O4 Nanofoils for lithium battery applications. Adv Funct Mater 26(42):7605–7613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Hee Han or Seung Soon Im.

Additional information

This article is part of the Topical Collection on Bio-Based Polymers

Electronic supplementary material

ESM 1

(DOCX 778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, J.M., Park, H., Hwang, S.Y. et al. Synthesis and characterization of poly(butylene succinate)-reduced graphene oxide composite through in-situ melt polymerization. J Polym Res 24, 213 (2017). https://doi.org/10.1007/s10965-017-1361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1361-x

Keywords

Navigation