Advertisement

Influence of a hydrophobic core on thermoresponsive behavior of dendrimer-based star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions

  • Alina Amirova
  • Serafim Rodchenko
  • Sergey Milenin
  • Elena Tatarinova
  • Mikhail Kurlykin
  • Andrey Tenkovtsev
  • Alexander Filippov
ORIGINAL PAPER

Abstract

The behavior of eight-arm, star-shaped poly(2-isopropyl-2-oxazoline) (PiPrOx8) with a hydrophobic dendrimer core was studied in aqueous solutions by light scattering and turbidimetry methods. In order to reveal the influence of the star-shaped structure, model linear PiPrOxs were investigated for comparison. The experiments were carried out within a 100-fold concentration interval at temperatures from 15 to 63 °C. Dendrimer core interaction lead to the formation of different types of aggregates at low temperatures as compared to star-shaped PiPrOx with different cores. The temperatures of the phase separation interval were determined and analyzed depending on concentration. It was shown that macromolecule shrinkage and aggregation occur below the phase separation onset which results from the specific chemical nature of macromolecules and their hydrophilic-hydrophobic balance.

Keywords

Thermosensitive polymer Poly(2-isopropyl-2-oxazolines) Phase separation Star polymers Solution properties 

Notes

Acknowledgements

The financial support was provided by the Russian Foundation for Basic Research (project no. 15-33-20693-mol_a_ved) and the Russian Science Foundation (no. 16-13-10521).

Supplementary material

10965_2017_1285_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1874 kb)

References

  1. 1.
    Min SH, Kwak SK, Kim BS (2015) Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate) Soft Matter 11:2423–2433CrossRefGoogle Scholar
  2. 2.
    Picos-Corrales LA, Licea-Claverie A, Cornejo-Bravo JM, Schwarz S, Arndt KF (2012) Well-defined N-Isopropylacrylamide dual-sensitive copolymers with LCST ≈ 38 °C in different architectures: linear, block and star polymers Macromol Chem Phys 213:301–314CrossRefGoogle Scholar
  3. 3.
    Weller D, McDaniel JR, Fischer K, Chilkoti A, Schmidt M (2013) Cylindrical polymer brushes with Elastin-like polypeptide side chains Macromolecules 46:4966–4971CrossRefGoogle Scholar
  4. 4.
    Liu X, Tian Z, Chen C, Allcock HR (2012) Synthesis and characterization of brush-shaped hybrid inorganic/organic polymers based on Polyphosphazenes Macromolecules 45:1417–1426CrossRefGoogle Scholar
  5. 5.
    Xu W, Choi I, Plamper FA, Synatschke CV, Müller AHE, Melnichenko YB, Tsukruk VV (2014) Thermo-induced limited aggregation of responsive star Polyelectrolytes Macromolecules 47:2112–2121CrossRefGoogle Scholar
  6. 6.
    Jain A, Kulkarni A, Bivigou Koumba AM, Wang W, Busch P, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Micellar solutions of a symmetrical Amphiphilic ABA Triblock copolymer with a temperature-responsive Shell Macromol Symp 291–292:221–229CrossRefGoogle Scholar
  7. 7.
    Troll K, Kulkarni A, Wang W, Darko C, Bivigou Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2008) The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films Colloid Polym Sci 286:1079–1092CrossRefGoogle Scholar
  8. 8.
    Steinschulte AA, Schulte B, Rütten S, Eckert T, Okuda J, Möller M, Schneider S, Borisov OV, Plamper FA (2014) Effects of architecture on the stability of thermosensitive unimolecular micelles Phys Chem Chem Phys 16:4917–4932CrossRefGoogle Scholar
  9. 9.
    Caponi PF, Qiu XP, Vilela F, Winnik FM, Ulijn RV (2011) Phosphatase/temperature responsive poly(2-isopropyl-2-oxazoline) Polym Chem 2:306–308CrossRefGoogle Scholar
  10. 10.
    Bühler J, Muth S, Fischer K, Schmidt M (2013) Collapse of cylindrical brushes with 2-Isopropyloxazoline side chains close to the phase boundary Macromol Rapid Commun 34:588–594CrossRefGoogle Scholar
  11. 11.
    Trinh LTT, Lambermont-Thijs HML, Schubert US, Hoogenboom R, Kjøniksen AL (2012) Thermoresponsive poly(2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior Macromolecules 45:4337–4345CrossRefGoogle Scholar
  12. 12.
    Kirila TU, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2017) Behavior of water solutions of thermoresponsive star-shaped polyalkyloxazolines differing in arm structure. Polym Sci A. (accepted)Google Scholar
  13. 13.
    Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2015) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions Colloid Polym Sci 293:239–248CrossRefGoogle Scholar
  14. 14.
    Amirova AI, Nikolaeva MN, Dudkina MM, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2016) The role of deuterium isotope in the formation of the behavior of thermoresponsive poly(2-isopropyl-2-oxazoline) Polym Sci A 58:676–683CrossRefGoogle Scholar
  15. 15.
    Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2017) Influence of arm length on aqueous solution behavior of thermosensitive poly(2-isopropyl-2-oxazoline) Colloid Polym Sci 295:117–124CrossRefGoogle Scholar
  16. 16.
    Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) The effect of arm number and solution concentration on phase separation of thermosensitive poly(2-isopropyl-2-oxazoline) stars in aqueous solutions Colloid Polym Sci 294:947–956CrossRefGoogle Scholar
  17. 17.
    Amirova A, Rodchenko S, Makhmudova Z, Cherkaev G, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A (2017) Synthesis, characterization, and investigation of Thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) based on Carbosilane Dendrimers Macromol Chem Phys 218:1600387CrossRefGoogle Scholar
  18. 18.
    Amirova A, Rodchenko S, Filippov A (2016) Time dependence of the aggregation of star-shaped poly(2-isopropyl-2-oxazolines) in aqueous solutions J Polym Res 23:221CrossRefGoogle Scholar
  19. 19.
    Iatridi Z, Tsitsilianis C (2011) pH responsive self assemblies from an an-core-(B-b-C)n heteroarm star block terpolymer bearing oppositely charged segments Chem Commun 47:5560–5562CrossRefGoogle Scholar
  20. 20.
    Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS Colloid Polym Sci 290:385–400CrossRefGoogle Scholar
  21. 21.
    Krumm C, Fik CP, Meuris M, Dropalla GJ, Geltenpoth H, Sickmann A, Tiller JC (2012) Well-defined Amphiphilic poly(2-oxazoline) ABA-Triblock copolymers and their aggregation behavior in aqueous solution Macromol Rapid Commun 33:1677–1682CrossRefGoogle Scholar
  22. 22.
    Filippov AP, Belyaeva EV, Zakharova NV, Sasina AS, Ilgach DM, Meleshko TK, Yakimansky AV (2015) Double stimuli-responsive behavior of graft copolymer with polyimide backbone and poly(N,N-dimethylaminoethyl methacrylate) side chains Colloid Polym Sci 293:555–565CrossRefGoogle Scholar
  23. 23.
    Xu J, Luo S, Shi W, Liu S (2006) Two-stage collapse of Unimolecular micelles with double Thermoresponsive coronas Langmuir 22:989–997CrossRefGoogle Scholar
  24. 24.
    Kyriakos K, Aravopoulou D, Augsbach L, Sapper J, Ottinger S, Psylla C, Aghebat Rafat A, Benitez-Montoya CA, Miasnikova A, Di Z, Laschewsky A, Müller-Buschbaum P, Kyritsis A, Papadakis CM (2014) Novel thermoresponsive block copolymers having different architectures – structural, rheological, thermal, and dielectric investigations Colloid Polym Sci 292:1757–1774CrossRefGoogle Scholar
  25. 25.
    Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities Prog Polym Sci 32:1275–1343CrossRefGoogle Scholar
  26. 26.
    Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s Prog Polym Sci 37:686–714CrossRefGoogle Scholar
  27. 27.
    Steinschulte AA, Schulte B, Erberich M, Borisov OV, Plamper FA (2012) Unimolecular Janus micelles by microenvironment-induced, internal complexation ACS Macro Lett 1:504–507CrossRefGoogle Scholar
  28. 28.
    Kratohvil JP, Aminabhavi TM (1982) Concentration dependence of the translational diffusion and the sedimentation velocity of sodium dodecyl sulfate micelles in water and in 0.1 m sodium chloride solutions at 25.degree.C Phys Chem 86:1254–1256CrossRefGoogle Scholar
  29. 29.
    Kratohvil JP (1979) The concentration dependence of micelle aggregation and the shape of micelles of sodium dodecyl sulfate and hexadecyltrimethylammonium bromide Chem Phys Lett 60:238–241CrossRefGoogle Scholar
  30. 30.
    Herfurth C, Laschewsky A, Noirez L, von Lospichl B, Gradzielski M (2016) Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution Polymer 107:422–433CrossRefGoogle Scholar
  31. 31.
    Schärtl W (2007) Light scattering from polymer solutions and Nanoparticle dispersions. Springer, BerlinGoogle Scholar
  32. 32.
    Katsumoto Y, Tsuchiizu A, Qiu X, Winnik FM (2012) Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through Vibrational spectroscopy and molecular orbital calculations Macromolecules 45:3531–3541CrossRefGoogle Scholar
  33. 33.
    Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers Macromol Rapid Commun 31:511–525CrossRefGoogle Scholar
  34. 34.
    Güner PT, Mikó A, Schweinberger FF, Demirel AL (2012) Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions Polym Chem 3:322–324CrossRefGoogle Scholar
  35. 35.
    Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications Angew Chem Int Ed 48:7978–7994CrossRefGoogle Scholar
  36. 36.
    Wu WC, Kuo YS, Cheng CH (2015) Dual-stimuli responsive polymeric micelles: preparation, characterization, and controlled drug release J Polym Res 22:80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Macromolecular Compounds of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg National Research University of Information TechnologiesSt. PetersburgRussia
  3. 3.Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of SciencesMoscowRussia

Personalised recommendations