Synthesis and characterization of polyimides from 4,4′-(3-(tert-butyl)-4-aminophenoxy)diphenyl ether

  • Congyan Li
  • Lang Yi
  • Shuting Xu
  • Xiuming Wu
  • Wei Huang
  • Deyue Yan


A novel diamine 4,4′-(3-(tert-butyl)-4-aminophenoxy)diphenyl ether (4) was synthesized from 2-tert-butylaniline and 4,4′-oxydiphenol through iodination, acetyl protection, coupling reaction and deacetylation protection. Then some polyimides (PIs) were obtained by one-pot polycondensation of diamne 4 with several commercial aromatic dianhydrides respectively. They all exhibit enhanced solubility in organic solvents (such as NMP, DMF, THF and CHCl3 etc.) at room temperature. Their number-average molecular weights are in the range of (2.1–3.7) × 104 g/mol with PDI from 2.25 to 2.74 by GPC. They can form transparent, tough and flexible films by solution-casting. The light transparency of them is higher than 90% in the visible light range from 400 nm to 760 nm and the cut-off wavelengths of UV–vis absorption are below 370 nm. They also display the outstanding thermal stability with the 5% weight loss temperature from 525 °C to 529 °C in nitrogen atmosphere. The glass transition temperatures (T g s) are higher than 264 °C by DSC. XRD results demonstrate that these PIs are amorphous polymers with the lower water absorption (<0.66%). In summary, the incorporation of tert-butyl groups and multiple phenoxy units into the rigid PI backbones can endow them excellent solubility and transparency with relatively high T g s.


tert-Butyl Multiple phenoxy units Polyimides Solubility Transparency 



The authors gratefully acknowledge the financial supports provided by the National Basic Research Program of China (No. 2014CB643604), Shanghai Key Projects of Basic Research (No. 16JC1403600).


  1. 1.
    MittalEd KL (ed) (1984) Polyimides: synthesis, characterization and application. Plenum, New YorkGoogle Scholar
  2. 2.
    Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) Prog Polym Sci 34:561–580CrossRefGoogle Scholar
  3. 3.
    Zhang A, Li X, Nah C, Hwang K, Lee MH (2003) J Polym Sci A Polym Chem 41:22–29CrossRefGoogle Scholar
  4. 4.
    Feger C, Khojasteh MM, Htoo MS (eds) (1993) Advances in polyimide science and technology technomic. LancasterGoogle Scholar
  5. 5.
    Chen CJ, Yen HJ, Chen WC, Liou GS (2011) J Polym Sci A Polym Chem 49:3709–3718CrossRefGoogle Scholar
  6. 6.
    Ye YS, Huang YJ, Cheng CC, Chang FC (2010) Chem Commun 46:7554–7556CrossRefGoogle Scholar
  7. 7.
    Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Prog Polym Sci 37:907–974CrossRefGoogle Scholar
  8. 8.
    Chun IS, Kim SY (2000) Macromolecules 33:3190–3193CrossRefGoogle Scholar
  9. 9.
    Rusanov AL, Shifrina ZB (1993) High Perform Polym 5:107–121CrossRefGoogle Scholar
  10. 10.
    Harris FW, Sakaguchi Y, Shibata M, Cheng SZD (1997) High Perform Polym 9:251–261CrossRefGoogle Scholar
  11. 11.
    Ioakim KS, John AM (1996) Macromolecules 29:5313–5319CrossRefGoogle Scholar
  12. 12.
    Grubb TL, Ulery VL, Smith TJ, Tullos GL, Yagci H, Mathias LJ, Langsam M (1999) Polymer 40:4279–4288CrossRefGoogle Scholar
  13. 13.
    Yang CP, Su YY, Chen YC (2006) Eur Polym J 42:721–732CrossRefGoogle Scholar
  14. 14.
    Chung CL, Tzu TW, Hsiao SH (2006) J Polym Res 13:495–506CrossRefGoogle Scholar
  15. 15.
    Huang XH, Huang W, Yan DY (2012) Acta Polym Sin 5:552–560CrossRefGoogle Scholar
  16. 16.
    Abbasi F, Mehdipour-Ataei S, Khademinejad S (2015) Des Monomers Polym 18:89–798CrossRefGoogle Scholar
  17. 17.
    Revathi R, Prabunathan P, Devaraju S, Alagar M (2015) High Perform Polym 27:247–253CrossRefGoogle Scholar
  18. 18.
    Liaw DJ, Liaw BY, Yu CW (2001) Polymer 42:5175–5179CrossRefGoogle Scholar
  19. 19.
    Huang XH, Huang W, Fu LC, Yan DY (2012) J Polym Res 19:1–9CrossRefGoogle Scholar
  20. 20.
    Tamai S, Yamaguchi A, Ohta M (1996) Polymer 37:3683–3692CrossRefGoogle Scholar
  21. 21.
    Huang W, Yan DY, Lu QH (2001) Macromol Rapid Commun 22:1481–1484CrossRefGoogle Scholar
  22. 22.
    Huang W, Yan DY, Lu QH, Tao P (2002) J Polym Sci A Polym Chem 40:229–234CrossRefGoogle Scholar
  23. 23.
    Yi L, Li CY, Huang W, Yan DY (2015) J Polym Sci A Polym Chem 54:976–984CrossRefGoogle Scholar
  24. 24.
    Huang XH, Huang W, Zhou YF, Yan DY (2011) Chin J Polym Sci 29:506–512CrossRefGoogle Scholar
  25. 25.
    Li CY, Yi L, Xu ST, Huang W, Yan DY (2016) Acta Polym Sin 7:938–945Google Scholar
  26. 26.
    Liaw DJ, Liaw BY (1996) Polym J 28:970–975CrossRefGoogle Scholar
  27. 27.
    Liaw DJ, Liaw BY (1997) J Polym Sci A Polym Chem 35:1527–1534CrossRefGoogle Scholar
  28. 28.
    Dine Hart RA, Wright WW (2003) Makromol Chem Rapid 143:189–206CrossRefGoogle Scholar
  29. 29.
    Imamura S, Yoshimura R, Izawa T (1991) Electron Lett 27:1342–1343CrossRefGoogle Scholar
  30. 30.
    Yi L, Li CY, Huang W, Yan DY (2014) J Polym Res 21:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Congyan Li
    • 1
  • Lang Yi
    • 1
  • Shuting Xu
    • 1
  • Xiuming Wu
    • 1
  • Wei Huang
    • 1
  • Deyue Yan
    • 1
  1. 1.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations