Journal of Polymer Research

, 23:251 | Cite as

Extensional rheology, cellular structure, mechanical behavior relationships in HMS PP/montmorillonite foams with similar densities

  • Ester Laguna-GutierrezEmail author
  • Alberto Lopez-Gil
  • Cristina Saiz-Arroyo
  • Rob Van Hooghten
  • Paula Moldenaers
  • Miguel Angel Rodriguez-Perez


The main goal of this work is to analyze the relationships between the extensional rheological behavior of solid nanocomposites based on high melt strength polypropylene (HMS PP) and montmorillonites (MMT) and the cellular structure and mechanical properties of foams produced from these materials. For this purpose two systems have been analyzed. The first one incorporates organomodified MMT and a compatibilizer and the second system contains natural clays and is produced without the compatibilizer. Results indicate that the extensional rheological behavior of both materials is completely different. The strain hardening of the polymer containing organomodified clays decreases as the clay content increases. As a consequence, the open cell content of this material increases with the clay content and hence, the mechanical properties get worse. However, in the materials produced with natural clays this relationship is not so clear. While no changes are detected in the extensional rheological behavior by adding these particles, the nano-filled materials show an open cell structure, opposite to the closed cell structure of the pure polymer, which is caused by the fact of having particle agglomerates with a size larger than the thickness of the cell walls and a poor compatibility between the clays and the polymer.


Extensional rheology Polymer foams Nanocomposites Structure-property relations Polypropylene 



Financial support from PIRTU contract of E. Laguna-Gutierrez by Junta of Castile and Leon (EDU/289/2011) and cofinanced by the European Social Fund is gratefully acknowledged. Cristina Saiz-Arroyo would like to acknowledge Spanish Ministry of Economy and Competitiveness (MINECO) via Torres Quevedo Program (PTQ-12-05504). Finally, financial assistance from MINECO and FEDER program (MAT 2012 – 34901) MINECO, FEDER, UE (MAT2015-69234-R) and the Junta de Castile and Leon (VA035U13) are gratefully acknowledged.


  1. 1.
    Tripathi D (2002) Practical guide to polypropylene. Rapra Technology Limited, ShrewsburyGoogle Scholar
  2. 2.
    He C, Costeux S, Wood-Adams P, Dealy JM (2003) Polymer 44:7181–7188CrossRefGoogle Scholar
  3. 3.
    Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) J Rheol 48:895–914CrossRefGoogle Scholar
  4. 4.
    Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42430(1)–42430(14)Google Scholar
  5. 5.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Compos Part B-Eng 39:933–961CrossRefGoogle Scholar
  7. 7.
    Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Chem Mater 13:3516–3523CrossRefGoogle Scholar
  8. 8.
    Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) J Appl Polym Sci 85:1562–1570CrossRefGoogle Scholar
  9. 9.
    Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87–92CrossRefGoogle Scholar
  10. 10.
    Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  11. 11.
    Krump H, Luyt AS, Hudec I (2006) Mater Lett 60:2877–2880CrossRefGoogle Scholar
  12. 12.
    Kiliaris P, Papaspyrides CD (2010) Prog Polym Sci 35:902–958CrossRefGoogle Scholar
  13. 13.
    Galindo-Rosales FJ, Moldenaers P, Vermant J (2011) Macromol Mater Eng 296:311–340CrossRefGoogle Scholar
  14. 14.
    Koo CM, Kym JH, Wang KH, Chung IJ (2005) J Polym Sci Pol Phys 43:158:167Google Scholar
  15. 15.
    Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ, Cho KS (2006) Macromol Res 14:318–323CrossRefGoogle Scholar
  16. 16.
    Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1:295–298CrossRefGoogle Scholar
  17. 17.
    Mittal V (2014) Polymer nanocomposite foams. CRC Press, Boca RatonGoogle Scholar
  18. 18.
    Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Polym Eng Sci 49:2070–2084CrossRefGoogle Scholar
  19. 19.
    Su FH, Yan JH, Huang HX (2011) J Appl Polym Sci 119:1230–1238CrossRefGoogle Scholar
  20. 20.
    Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M (2004) Polym Eng Sci 44:1004–1011CrossRefGoogle Scholar
  21. 21.
    Zheng WG, Lee YH, Park CB (2010) J Appl Polym Sci 117:2972–2979Google Scholar
  22. 22.
    Zhai W, Kuboki T, Wang L, Park CB, Lee EK, Naguib HE (2010) Ind Eng Chem Res 49:9834–9845CrossRefGoogle Scholar
  23. 23.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63CrossRefGoogle Scholar
  24. 24.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Fu Q, Jiang L, Lei Y (2000) Polym Int 49:1561–1564CrossRefGoogle Scholar
  26. 26.
    Kim K, Kim H, Lee J (2001) Polym Eng Sci 41:1963–1969CrossRefGoogle Scholar
  27. 27.
    Dong Y, Bhattacharyya D (2008) Compos Part A-Appl S 39:1177–1191CrossRefGoogle Scholar
  28. 28.
    Lee SH, Cho E, Youn JR (2007) J Appl Polym Sci 103:3506–3515CrossRefGoogle Scholar
  29. 29.
    Kato M, Usuki A, Okada A (1997) J Appl Polym Sci 66:1781–1785CrossRefGoogle Scholar
  30. 30.
    Lertwimolnun W, Vergnes B (2005) Polymer 46:3462–3471CrossRefGoogle Scholar
  31. 31.
    Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46:10237–10245CrossRefGoogle Scholar
  32. 32.
    Zhai W, Park CB, Kontopoulou M (2011) Ind Eng Chem Res 50:7282–7289CrossRefGoogle Scholar
  33. 33.
    Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42828(1)–42828(12)Google Scholar
  34. 34.
    Gibson LJ (1989) Mater Sci Eng A-Struct 110:1–36CrossRefGoogle Scholar
  35. 35.
    Saiz-Arroyo C, de Saja JA, Velasco JI, Rodriguez-Perez MA (2012) J Mater Sci 47:5680–5692CrossRefGoogle Scholar
  36. 36.
    Saiz-Arroyo C, Rodriguez-Perez MA, Velasco JI, de Saja JA (2013) Compos Part B-Eng 48:40–50CrossRefGoogle Scholar
  37. 37.
    Saiz-Arroyo C, Rodriguez-Perez MA, Tirado J, Lopez-Gil A, de Saja JA (2013) Polym Int 62:1324–1333CrossRefGoogle Scholar
  38. 38.
    Pinto J, Solorzano E, Rodriguez-Perez MA, de Saja JA (2013) J Cell Plast 49:555–575CrossRefGoogle Scholar
  39. 39.
    Gong W, Gao J, Jiang M, He L, Yu J, Zhu J (2011) J Appl Polym Sci 122:2907–2914CrossRefGoogle Scholar
  40. 40.
    Rodriguez-Perez MA, de Saja JA (1999) Cell Polym 18:1–20Google Scholar
  41. 41.
    Almanza O, Rodriguez-Perez MA, de Saja JA (2001) Polymer 42:7117–7126CrossRefGoogle Scholar
  42. 42.
    Rodriguez-Perez MA, Diez-Gutierrez S, de Saja JA (1998) Polym Eng Sci 38:831–837CrossRefGoogle Scholar
  43. 43.
    Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J (2005) Polymer 46:11624–11634CrossRefGoogle Scholar
  44. 44.
    Lee ST (2000) Foam extrusion: principles and practice. Technomic Publishing Company, Lancaster, PennsylvaniaCrossRefGoogle Scholar
  45. 45.
    Stange J, Uhl C, Münstedt H (2005) J Rheol 49:1059–1079CrossRefGoogle Scholar
  46. 46.
    Chaudhary AK, Jayaraman K (2011) Polym Eng Sci 51:1749–1756CrossRefGoogle Scholar
  47. 47.
    Dealy JM, Wang J (2013) Melt rheology and its applications in the plastic industry. Springer Science + Business Media, DordrechtCrossRefGoogle Scholar
  48. 48.
    Stange J, Münstedt H (2006) J Cell Plast 42:445–467CrossRefGoogle Scholar
  49. 49.
    Takahashi T, Nakajima H, Masubuchi Y, Takimoto J, Koyama K (1998) Sen'i Gakkaishi 54:538–543CrossRefGoogle Scholar
  50. 50.
    Takahashi T, Wu W, Toda H, Takimoto J, Akatsuka T, Koyama K (1997) J Non-Newton Fluid 68:259–269CrossRefGoogle Scholar
  51. 51.
    Kobayashi M, Takahashi T, Takimoto J, Koyama K (1996) Polymer 37:3745–3747CrossRefGoogle Scholar
  52. 52.
    Kobayashi M, Takahashi T, Takimoto J, Koyama K (1995) Polymer 36:3927–3933CrossRefGoogle Scholar
  53. 53.
    Le Meins JF, Moldenaers P, Mewis J (2003) Rheol Acta 42:184–190CrossRefGoogle Scholar
  54. 54.
    Naguib HE, Park CB, Panzer U, Reichelt N (2002) Polym Eng Sci 42:1481–1492CrossRefGoogle Scholar
  55. 55.
    Rodriguez-Perez MA, Alvarez-Lainez M, de Saja JA (2009) J Appl Polym Sci 114:1176–1186CrossRefGoogle Scholar
  56. 56.
    Lee LJ, Zeng C, Cao X, Han H, Shen J, Xu G (2005) Compos Sci Technol 65:2344–2363CrossRefGoogle Scholar
  57. 57.
    Lee ST, Park CB, Ramesh NS (2007) Polymeric foams: science and technology. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ester Laguna-Gutierrez
    • 1
    Email author
  • Alberto Lopez-Gil
    • 2
  • Cristina Saiz-Arroyo
    • 2
  • Rob Van Hooghten
    • 3
  • Paula Moldenaers
    • 3
  • Miguel Angel Rodriguez-Perez
    • 1
  1. 1.Cellular Materials Laboratory (CellMat), Condensed Matter Physics DepartmentUniversity of ValladolidValladolidSpain
  2. 2.CellMat Technologies, CTTA (building)ValladolidSpain
  3. 3.Department of Chemical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations