Advertisement

Journal of Polymer Research

, 23:221 | Cite as

Time dependence of the aggregation of star-shaped poly(2-isopropyl-2-oxazolines) in aqueous solutions

  • Alina Amirova
  • Serafim Rodchenko
  • Alexander Filippov
ORIGINAL PAPER

Abstract

The paper concerns the analysis of time t eq required to equilibrium state achievement in aqueous solutions of star-shaped poly(2-isopropyl-2-oxazolines) (PiPrOx) after changing temperature. The discussed data were obtained for PiPrOx differing in arm number and length. For all samples, high t eq values, half an hour at least, were obtained because of rather high intramolecular density. The dependence t eq on temperature displayed maximum near the phase separation beginning due to the aggregate growth and redistribution of scattering particles. The maximum times t eq increased symbatically with arm number and length. The higher energy of the hydrogen bond formed by deuterium isotope leads to the growth of the t eq values as compared to solutions in H2O.

Keywords

Thermosensitive polymer Kinetic poly(2-isopropyl-2-oxazolines) Phase separation Aggregation 

Notes

Acknowledgments

The financial support was provided by the Russian Science Foundation (project no. 14-13-00231).

References

  1. 1.
    Meyer M, Antonietti M, Schlaad H (2007) Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline. Soft Matter 3:430–431CrossRefGoogle Scholar
  2. 2.
    Contreras MM, Mattea C, Rueda JC, Stapf S, Bajd F (2015) Synthesis and characterization of block copolymers from 2-oxazolines. Des Monomers Polym 18:170–179CrossRefGoogle Scholar
  3. 3.
    Obeid R, Maltseva E, Thünemann AF, Tanaka F, Winnik FM (2009) Temperature response of self-assembled micelles of telechelic hydrophobically modified poly(2-alkyl-2-oxazoline)s in water. Macromolecules 42:2204–2214CrossRefGoogle Scholar
  4. 4.
    Hruby M, Filippov SK, Panek J, Novakova M, Mackova H, Kucka J, Ulbrich K (2010) Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci 10:916–924CrossRefGoogle Scholar
  5. 5.
    Saha A, Ramakrishnan S (2008) AB2 + A type copolymerization approach for the preparation of thermosensitive PEGylated Hyperbranched polymers. Macromolecules 41:5658–5664CrossRefGoogle Scholar
  6. 6.
    de la Rosa VR, Nau WM, Hoogenboom R (2015) Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Org Biomol Chem 13:3048–3057CrossRefGoogle Scholar
  7. 7.
    Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119CrossRefGoogle Scholar
  8. 8.
    Zaccone A, Crassous JJ, Béri B, Ballauff M (2011) Quantifying the reversible association of thermosensitive nanoparticles. Phys Rev Lett 107:168303CrossRefGoogle Scholar
  9. 9.
    Ye J, Xu J, Hu J, Wang X, Zhang G, Liu S, Wu C (2008) Comparative study of temperature-induced association of cyclic and linear poly(N-isopropylacrylamide) chains in dilute solutions by laser light scattering and stopped-flow temperature jump. Macromolecules 41:4416–4422CrossRefGoogle Scholar
  10. 10.
    Zhao J, Hoogenboom R, Van Assche G, Van Mele B (2010) Demixing and remixing kinetics of poly(2-isopropyl-2-oxazoline) (PIPOZ) aqueous solutions studied by modulated temperature differential scanning calorimetry. Macromolecules 43:6853–6860CrossRefGoogle Scholar
  11. 11.
    Han X, Zhang X, Zhu H, Yin Q, Liu HL, Hu Y (2013) Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors. Langmuir 29:1024–1034CrossRefGoogle Scholar
  12. 12.
    Adelsberger J, Grillo I, Kulkarni A, Sharp M, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2013) Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers – influence of concentration, start and target temperatures. Soft Matter 9:1685–1699CrossRefGoogle Scholar
  13. 13.
    Filippov AP, Amirova AI, Dudkina MM, Tenkovtsev AV (2013) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solution. Int J Polym Anal Charact 18:567–577CrossRefGoogle Scholar
  14. 14.
    Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2015) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293:239–248CrossRefGoogle Scholar
  15. 15.
    Filippov AP, Amirova AI, Nikolaeva MN, Dudkina MM, Tenkovtsev AV (2014) Deuterium isotope effect on solution behavior of thermoresponsive star-shaped poly(2-isopropyl-2-oxazoline. Int J Polym Anal Charact 19:721–730CrossRefGoogle Scholar
  16. 16.
    Amirova AI, Nikolaeva MN, Dudkina MM, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2016) The role of deuterium isotope in the formation of the behavior of thermoresponsive poly(2-isopropyl-2-oxazoline). Polym Sci A. doi: 10.7868/S2308112016050023 Google Scholar
  17. 17.
    Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) Influence of arm length and number on star-shaped poly(2-isopropyl-2-oxazoline) aggregation in aqueous solutions near cloud point. Soft Matter 14:15–26CrossRefGoogle Scholar
  18. 18.
    Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) The effect of arm number and solution concentration on phase separation of thermosensitive poly(2-isopropyl-2-oxazoline) stars in aqueous solutions. Colloid Polym Sci 294:947–956CrossRefGoogle Scholar
  19. 19.
    Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP. Influence of arm length on aqueous solution behavior of thermosensitive poly(2-isopropyl-2-oxazoline) stars (submitted)Google Scholar
  20. 20.
    Filippov AP, Tarabukina EB, Zakharova NV, Amirova AI, Simonova MA (2015) Behaviorial features of aqueous solutions of thermoresponsive and pH-sensitive polymers with complicated architectures. Fibre Chem 47:137–143CrossRefGoogle Scholar
  21. 21.
    Adelsberger J, Metwalli E, Diethert A, Grillo I, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2012) Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump. Macromol Rapid Commun 33:254–259CrossRefGoogle Scholar
  22. 22.
    Cheng G, Hua F, Melnichenko YB, Hong K, Mays JW, Hammouda B, Wignall GD (2008) Conformation of oligo(ethylene glycol) grafted poly(norbornene) in solutions: a small angle neutron scattering study. Eur Polym J 44:2859–2864CrossRefGoogle Scholar
  23. 23.
    Bogomolova A, Hruby M, Panek J, Rabyk M, Turner S, Bals S, Steinhart M, Zhigunov A, Sedlacek O, Stepanek P, Filippov SK (2013) Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties. J Appl Crystallogr 46:1690–1698CrossRefGoogle Scholar
  24. 24.
    Kratochvil P (1987) Classical light scattering from polymer solution. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, BerlinGoogle Scholar
  26. 26.
    Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525CrossRefGoogle Scholar
  27. 27.
    Güner PT, Mikó A, Schweinberger FF, Demirel AL (2012) Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions. Polym Chem 3:322–324CrossRefGoogle Scholar
  28. 28.
    Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994CrossRefGoogle Scholar
  29. 29.
    Weller D, McDaniel JR, Fischer K, Chilkoti A, Schmidt M (2013) Cylindrical polymer brushes with elastin-like polypeptide side chains. Macromolecules 46:4966–4971CrossRefGoogle Scholar
  30. 30.
    Katsumoto Y, Tsuchiizu A, Qiu XP, Winnik FM (2012) Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through vibrational spectroscopy and molecular orbital calculations. Macromolecules 45:3531–3541CrossRefGoogle Scholar
  31. 31.
    Dworak A, Trzebicka B, Kowalczuk A, Tsvetanov C, Rangelov S (2014) Polyoxazolines – mechanism of synthesis and solution properties. Polimery 59:88–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Macromolecular Compounds of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations