Journal of Polymer Research

, 23:206 | Cite as

Joint effects of molecular structure and crystal morphology of organophosphate monovalent salts on nucleated isotactic poly(propylene)

  • Lijuan Long
  • Wentao He
  • Juan Li
  • Yushu Xiang
  • Shuhao Qin
  • Jie YuEmail author
  • Jingbo YinEmail author


The nucleation ability of organophosphate monovalent salts in isotactic poly(propylene) (iPP) was elucidated from the crystalline morphology and molecular structure with different size of cationic radius (r) of substitute parts. Differential scanning calorimetry result showed that the degree of crystallinity of nucleated iPP increased linearly with the increasing of r following the order of lithium (NA-10), sodium (NA-11), potassium (NA-12), ammonium (NA-13) salts of 2,2′-methylene- bis-(4,6-di-t-butylphenylene) phosphate. Moreover, small-angle X-ray scattering result displayed a large increase in the periodical length of nucleated iPP, which arises from an increment of both lamella thickness and amorphous thickness. Further, at 0.15 wt% concentration, the haze values of nucleated iPP presented a decrease tendency in the order of iPP/NA-10 (16.7 %), iPP/NA-11 (15.1 %), iPP/NA-12 (14.6 %), iPP/NA-13 (14.8 %), and their flexural strength was increased by 26.2 %, 30.8 %, 31.4 % and 31.7 %, respectively, as comparison to virgin iPP. These results demonstrated that the nucleating ability of these nucleating agents increased with the increase of r of substitute parts.


Nucleating agent Polypropylene Organophosphate monovalent salts Cationic radius Crystal morphology 



The work was financially supported by National Natural Science Foundation of China (51263003) and the Science and Technological Project of Guizhou Province ([2015]3008), And we gratefully acknowledge Shanghai Synchrotron Radiation Facility (SSRF).


  1. 1.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) Macromolecules 36:5150–5156Google Scholar
  2. 2.
    Tang JG, Wang Y, Liu HY, Belfiore LA (2004) Polymer 45:2081–2091Google Scholar
  3. 3.
    Yi QF, Wen XJ, Dong JY, Han CC (2008) Polymer 49:5053–5063Google Scholar
  4. 4.
    Jin L, Wang H, Yang YJ (2013) Compos Sci Technol 79:58–63Google Scholar
  5. 5.
    Han LJ, Han CY, Bian JJ, Bian YJ, Lin HJ, Wang XM, Zhang HL, Dong LS (2012) Polym Eng Sci 1474–1484Google Scholar
  6. 6.
    Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J (2011) Intern Polym Proc XXVI 1:2–20Google Scholar
  7. 7.
    Chang HF, Li HY, Zheng T, Zhang LY, Yuan W, Li L, Huang H, Hu YL (2013) J Polym Res 20:207Google Scholar
  8. 8.
    Balzano L, Portale G, Peters GWM, Rastogi S (2008) Macromolecules 41:5350–5355Google Scholar
  9. 9.
    Li B, Hu GH, Cao GP, Liu T, Zhao L, Yuan WK (2008) J Supercritical Fluids 44:446–456Google Scholar
  10. 10.
    Gui QD, Xin Z, Zhu WP, Dai GC (2003) J Appl Polym Sci 88:297–301Google Scholar
  11. 11.
    Quan YN, Li HH, Yan SK (2013) Ind Eng Chem Res 52:4772–4778Google Scholar
  12. 12.
    Patil N, Invigorito C, Gahleitner M, Rastogi S (2013) Polymer 54:5883–5891Google Scholar
  13. 13.
    Nagasawa S, Fujimori A, Masuko T, Iguchi M (2005) Polymer 46:5241–5250Google Scholar
  14. 14.
    Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T (2001) Polymer 42:9627–9631Google Scholar
  15. 15.
    Abraham F, Kress R, Smith P, Schmidt HW (2013) Macromol Chem Phys 214:17–24Google Scholar
  16. 16.
    Beck HN (1967) J Appl Polym Sci 11:673–685Google Scholar
  17. 17.
    Shii YY, Shao LN, Yang JH, Huang T, Wang YH, Zhang N, Wang Y (2013) Polym Adv Technol 24:42–50Google Scholar
  18. 18.
    Blomenhofer M, Ganzleben S, Hanft D, Schmidt HW, Kristiansen M, Smith P, Stoll K, Mader D, Hoffmann K (2005) Macromolecules 38:3688–3695Google Scholar
  19. 19.
    Zhang YF, Xin Z (2006) J Appl Polym Sci 100:4868–4874Google Scholar
  20. 20.
    Zhang YF, Xin Z (2006) J Appl Polym Sci 101:3307–3316Google Scholar
  21. 21.
    Hiroyuki A, Inoue K (1997) JP 9–100371Google Scholar
  22. 22.
    Alcazar D, Ruan J, Thierry A, Lotz B (2006) Macromolecules 39:2832–2840Google Scholar
  23. 23.
    Haubruge HG, Daussin R, Jonas AM, Legras R (2003) Macromolecules 36:4452–4456Google Scholar
  24. 24.
    Chvatalova L, Navratilova J, Cermak R, Raab M, Obadal M (2009) Macromolecules 42:7413–7417Google Scholar
  25. 25.
    Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Polymer J 41:228–236Google Scholar
  26. 26.
    Libster D, Aserin A, Garti N (2007) Polym Adv Technol 18:685–695Google Scholar
  27. 27.
    Urushihara T, Okada K, Watanabe K, Toda A, Tobita E, Kawamoto N, Hikosaka M (2007) Polymer J 39:55–64Google Scholar
  28. 28.
    Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M (2007) Polymer 48:401–408Google Scholar
  29. 29.
    Horvath Z, Menyhard A, Doshev P, Gahleitner M, Voros G, Varga J, Pukanszky B (2014) Appl Mater Interfaces 6:7456–7463Google Scholar
  30. 30.
    Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, Cheevasrirungruang W (2014) Ind Eng Chem Res 53:2331–2339Google Scholar
  31. 31.
    Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, Jeu WH (2008) Polymer 49:3076–3083Google Scholar
  32. 32.
    Sanguansat P, Amornsakchai T (2015) J Polym Res 22:30. doi: 10.1007/s10965-015-0676-8
  33. 33.
    Li, XY, Liu, YP, Tian, XY, Cui KP (2016) J Polym Sci Pol Phys 54:1573–1580Google Scholar
  34. 34.
    Tabatabaei SH, Carreau PJ, Ajji A (2009) Polymer 50:4228–4240Google Scholar
  35. 35.
    Sun YS (2006) Polymer 47:8032–8043Google Scholar
  36. 36.
    Strobl GR, Schneider M (1980) J Polym Sci: Polym Phys Ed 18:1343–1359Google Scholar
  37. 37.
    Strobl GR, Schneider M, Voigt-Martin IG (1980) J Polym Sci: Polym Phys Ed 18:1361–1381Google Scholar
  38. 38.
    Dong M, Guo ZX, Yu J, Su ZQ (2009) J Polym Sci Pol Phys 47:314–325Google Scholar
  39. 39.
    Haese MD, Langouche F, Puyvelde PV (2013) Macromolecules 46:3425–3424Google Scholar
  40. 40.
    Wu Y, Hsu SL (2012) J Phys Chem B 116:7379–7388Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Polymer MaterialsShanghai UniversityShanghaiChina
  2. 2.National Engineering Research Center for Compounding and Modification of Polymer MaterialsGuiyangChina

Personalised recommendations