Effect of electron density on the catalysts for copolymerization of propylene oxide and CO2

  • Shilpa Narang
  • Dušan Berek
  • S. N. Upadhyay
  • Rajeev Mehta
Original Paper

Abstract

Copolymerization of propylene oxide and carbon dioxide (CO2) has been studied using different R-salophenCoOBzF5 (OBzF5 = pentaflorobenzoate, R = CH3, H, Cl, Cl2) based catalysts. The central moiety of the catalysts R-salophenCoOBzF5 has been kept the same and effect of the catalyst electron density on the copolymerization reaction has been studied. It has been observed that introduction of an electron withdrawing group (like Cl, Cl2) on the o-phenylenediamine backbone moiety of the catalyst makes it more selective for poly(propylene carbonate) synthesis. On the other hand, introduction of an electron donating group (like CH3) makes the catalyst selective for cyclic carbonate conversion. The effect of different type of co-catalysts has also been investigated using tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, [PPN]+Cl ([PPN]+ = bis(triphenylphosphine)iminium), DMAP and tetrabutyl ammonium bromide.

Keywords

Catalysts Poly(propylene carbonate) Propylene oxide Carbon dioxide Cyclic carbonate 

Notes

Acknowledgments

This work was supported in part by the All India Council of Technical Education, New Delhi (India) under Project No. 8023/RID/RPS/068/11/12. The support of Sophisticated Analytical Instrumentation Laboratory, Thapar University, Patiala (Punjab), India is gratefully acknowleged. Award of Raja Ramanna Emeritus Fellowship to SN Upadhyay is gratefully acknowledged.

Supplementary material

10965_2016_994_MOESM1_ESM.doc (66 kb)
ESM 1 (DOC 65 kb)

References

  1. 1.
    Houghton JT, Climate Change 1995. The Science of climate change (Cambridge Univ. Press, Cambridge, 1996)Google Scholar
  2. 2.
    Lu XB, Darensbourg DJ (2012) Chem Soc Rev 41:1462–1484CrossRefGoogle Scholar
  3. 3.
    Li H, Niu Y (2011) React Funct Polym 71:121–125CrossRefGoogle Scholar
  4. 4.
    Sakharov AM, Ilin VV, Rusak VV, Nysenko ZN, Klimov SA (2002) Russ Chem Bull Int Ed 51:1451–1454CrossRefGoogle Scholar
  5. 5.
    Wu W, Qin Y, Wang X, Wang F (2013) J Polym Sci Part A: Polym Chem 51:493–498CrossRefGoogle Scholar
  6. 6.
    Lu XB, Feng XJ, He R (2002) Appl Catal A Gen 234:25–33CrossRefGoogle Scholar
  7. 7.
    Darensbourg DJ, Yarbrough JC, Ortiz C, Fang CC (2003) J Am Chem Soc 125:7586–7591CrossRefGoogle Scholar
  8. 8.
    Dong Y, Wang X, Zhao X, Wang F (2012) J Polym Sci Part A: Polym Chem 50:362–370CrossRefGoogle Scholar
  9. 9.
    Chen S, Xiao M, Wang S, Han D, Meng Y (2012) J Polym Res 19:9800CrossRefGoogle Scholar
  10. 10.
    Gao Y, Qin Y, Zhao X, Wang F, Wang X (2012) J Polym Res 19:9878CrossRefGoogle Scholar
  11. 11.
    Eberhardt R, Allmendinger M, Rieger B (2003) Macromol Rapid Commun 24:194–196CrossRefGoogle Scholar
  12. 12.
    Niu Y, Li H, Chen X, Zhang W, Zhuang X, Jing X (2009) Macromol Chem Phys 210:1224–1229CrossRefGoogle Scholar
  13. 13.
    Niu YS, Zhang WX, Li HC, Chen XS, Sun JR, Zhuang XL, Jing XB (2009) Polymer 50:441CrossRefGoogle Scholar
  14. 14.
    Tang L, Xiao M, Xu Y, Wang S, Meng Y (2013) J Polym Res 20:190CrossRefGoogle Scholar
  15. 15.
    Liu B, Zhao X, Wang X, Wang F (2001) J Polym Sci Part A: Polym Chem 39:2751–2754Google Scholar
  16. 16.
    Jung JH, Ree M, Chang T (1999) J Polym Sci Part A: Polym Chem 37:3329–3336CrossRefGoogle Scholar
  17. 17.
    Wu J, Xiao M, He H, Wang S, Han D, Meng Y (2011) J Polym Res 18:1479–1486CrossRefGoogle Scholar
  18. 18.
    Liu B, Zhao X, Guo H, Gao Y, Yang M, Wang X (2009) Polymer 50:5071–5075CrossRefGoogle Scholar
  19. 19.
    Sugimoto H, Ogawa A (2007) React Funct Polym 67:1277–1283CrossRefGoogle Scholar
  20. 20.
    Paddock RL, Nguyen ST (2005) Macromolecules 38:6251CrossRefGoogle Scholar
  21. 21.
    Darensbourg DJ, Phelps AL (2005) Inorg Chem 44:4622–4629CrossRefGoogle Scholar
  22. 22.
    Min J, Seong JE, Na SJ, Cyriac A, Lee BY (2009) Bull Kor Chem Soc 30:745–748CrossRefGoogle Scholar
  23. 23.
    Nakano K, Kobayashi K, Nozaki K (2011) J Am Chem Soc 133:10720–10723CrossRefGoogle Scholar
  24. 24.
    Zintl M, Molnar F, Urban T, Bernhart V, Pflugl PP, Rieger B (2008) Angew Chem Int Ed 47:3458–3460CrossRefGoogle Scholar
  25. 25.
    Reichardt R, Vagin S, Reithmeier R, Ott AK, Rieger B (2010) Macromolecules 43:9311–9317CrossRefGoogle Scholar
  26. 26.
    Hostalek Z, Mundil R, Císarov I, Trhlíkov O, Grau E, Peruch F, Cramail H, Merna J (2015) Polymer 63:52–61CrossRefGoogle Scholar
  27. 27.
    Lu XB, Wang YM (2004) Angew Chem Int Ed 43:3574–3577CrossRefGoogle Scholar
  28. 28.
    Lu XB, Shi L, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B (2006) J Am Chem Soc 128:1664–1674CrossRefGoogle Scholar
  29. 29.
    Anderson CE, Vagin SI, Xia W, Jin H, Rieger B (2012) Macromolecules 45:6840–6849CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Shilpa Narang
    • 1
  • Dušan Berek
    • 2
  • S. N. Upadhyay
    • 3
  • Rajeev Mehta
    • 4
  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia
  2. 2.Polymer Institute of the Slovak Academy of SciencesBratislavaSlovakia
  3. 3.Department of Chemical Engineering & TechnologyIIT(BHU)VaranasiUttar PradeshIndia
  4. 4.Department of Chemical EngineeringThapar UniversityPatialaIndia

Personalised recommendations