Journal of Polymer Research

, 22:184 | Cite as

Effect of dendritic polymers on a simple model biological membrane

  • K. Ciepluch
  • B. Nyström
  • D. Appelhans
  • M. Zablocka
  • M. Bryszewska
  • J. P. Majoral
Original Paper


The higher disruption of lipid bilayer and higher cytotoxicity caused by nanoparticles are often linked to the aggregation process of the particles onto the biological membrane of the cell. To understand how nanoparticles behave when they meet a biological membrane it is important to consider their potential applications in biomedical science. In spite of many biological applications of dendritic scaffolds, a major problem of their cationic exponents is the disruptive biological properties against cell membranes leading to toxicity. Up to now many studies about biological and biochemical effects on membranes have emerged. Therefore, we have investigated the interaction of different kinds of dendritic scaffols on a simple biological membrane model: a small cationic dendrimer with viologen units, hyperbranched poly(ethyleneimine) (PEI), and maltosylated PEI. Our main aim was to check how different types of dendritic scaffolds can affect the model membrane. To probe this effect, we employed dynamic light scattering (DLS), zeta potential, fluorescence, and transmission electron microscopy (TEM) techniques. Results from this work facilitate our understanding of interaction of dendritic nanoparticles with biological membranes. This investigation can help use to explain the toxicological effect of these nanoparticles. As a model of a biological membrane, we use negatively charged liposomes, consisting of a mixture of lipids: 90 % DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and 10 % DPPG (1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol).


Dendritic polymers Liposomes Dynamic light scattering Membrane model 



The authors thank Antje Hofgaard for his assistance during experiments with Transmision Electron Microscopy. Studies were partially funded by the Ministry of Science and Higher Education in program ,,Mobility plus”.

Conflict of interest

The authors do not have commercial or other associations that might pose a conflict of interest.


  1. 1.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900CrossRefGoogle Scholar
  2. 2.
    Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429CrossRefGoogle Scholar
  3. 3.
    Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137CrossRefGoogle Scholar
  4. 4.
    Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle–cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29:4244–4252CrossRefGoogle Scholar
  5. 5.
    Ginzburg VV, Balijepalli S (2007) Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 7:3716–3722CrossRefGoogle Scholar
  6. 6.
    Dawson KA, Salvati A, Lynch I (2009) Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 4:84–85CrossRefGoogle Scholar
  7. 7.
    Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Oberdörster Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  8. 8.
    Peetla C, Labhasetwar V (2008) Biophysical characterization of nanoparticle–endothelial model cell membrane interactions. Mol Pharm 5:418–429CrossRefGoogle Scholar
  9. 9.
    Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799CrossRefGoogle Scholar
  10. 10.
    Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141CrossRefGoogle Scholar
  11. 11.
    Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6:8962–8969CrossRefGoogle Scholar
  12. 12.
    Vandebriel RJ, Tonk EC, de la Fonteyne-Blankestijn LJ, Gremmer ER, Verharen HW, van der Ven LT, van Loveren H, de Jong WH (2014) Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Part Fibre Toxicol 11:21. doi: 10.1186/1743-8977-11-21 CrossRefGoogle Scholar
  13. 13.
    Poupot M, Griffe L, Marchand P, Maraval A, Rolland O, Martinet L, L’Faqihi-Olive FE, Turrin CO, Caminade AM, Fournié JJ, Majoral JP, Poupot R (2006) Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J 20:2339–2351CrossRefGoogle Scholar
  14. 14.
    Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces 6:16416–16425CrossRefGoogle Scholar
  15. 15.
    Longmire MR, Ogawa M, Choyke PL, Kobayashi H (2014) Dendrimers as high relaxivity MR contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:155–162CrossRefGoogle Scholar
  16. 16.
    Córdoba EV, Pion M, Rasines B, Filippini D, Komber H, Ionov M, Bryszewska M, Appelhans D, Muñoz-Fernández MA (2013) Glycodendrimers as new tools in the search for effective anti-HIV DC-based immunotherapies. Nanomedicine 9:972–984CrossRefGoogle Scholar
  17. 17.
    Liu J, Zhou J, Luo Y (2012) SiRNA delivery systems based on neutral cross-linked dendrimers. Bioconjug Chem 23:174–183CrossRefGoogle Scholar
  18. 18.
    Röglin L, Lempens EH, Meijer EW (2011) A synthetic “tour de force”: well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew Chem Int Ed Engl 50:102–112CrossRefGoogle Scholar
  19. 19.
    Bryszewska M, Klajnert B (2012) Dendrimers in biomedical applications. Curr Med Chem 19:4895CrossRefGoogle Scholar
  20. 20.
    Klajnert B, Rozanek M, Bryszewska M (2012) Dendrimers in photodynamic therapy. Curr Med Chem 19:4903–4912CrossRefGoogle Scholar
  21. 21.
    Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. Chem Rev Jan 114:1327–1342CrossRefGoogle Scholar
  22. 22.
    Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Adw Drug Delivery Rev 65:1316–1330CrossRefGoogle Scholar
  23. 23.
    El Kazzouli S, El Brahmi N, Mignani S, Bousmina M, Zablocka M, Majoral JP (2012) From metallodrugs to metallodendrimers for nanotherapy in oncology: a concise overview. Current Med Chem 19:4995–5010CrossRefGoogle Scholar
  24. 24.
    Berényi S, Mihály J, Wacha A, Tőke O, Bóta A (2014) A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. Colloids Surf B: Biointerfaces 118:164–171CrossRefGoogle Scholar
  25. 25.
    Wang W, Xiong W, Zhu Y, Xu H, Yang X (2010) Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J Biomed Mater Res B Appl Biomater 93:59–64Google Scholar
  26. 26.
    Klajnert B, Appelhans D, Komber H, Morgner N, Schwarz S, Richter S, Brutschy B, Ionov M, Tonkikh AK, Bryszewska M, Voit B (2008) The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chemistry 14:7030–7041CrossRefGoogle Scholar
  27. 27.
    Ciepluch K, Katir N, El Kadib A, Felczak A, Zawadzka K, Weber M, Klajnert B, Lisowska K, Caminade AM, Bousmina M, Bryszewska M, Majoral JP (2012) Biological properties of new viologen-phosphorus dendrimers. Mol Pharm 9:448–457CrossRefGoogle Scholar
  28. 28.
    Lazniewska J, Milowska K, Katir N, El Kadib A, Bryszewska M, Majoral JP, Gabryelak T (2013) Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cell Mol Biol Lett 18:459–478CrossRefGoogle Scholar
  29. 29.
    Lazniewska J, Janaszewska A, Miłowska K, Caminade AM, Mignani S, Katir N, El Kadib A, Bryszewska M, Majoral JP, Gabryelak T, Klajnert-Maculewicz B (2013) Promising low-toxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. Molecules 18:12222–12240CrossRefGoogle Scholar
  30. 30.
    Liu X, Liu C, Zhou J, Chen C, Qu F, Rossi JJ, Rocchi P, Peng L (2015) Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 7:3867–3875CrossRefGoogle Scholar
  31. 31.
    Mishra MK, Beaty CA, Lesniak WG, Kambhampati SP, Zhang F, Wilson MA, Blue ME, Troncoso JC, Kannan S, Johnston MV, Baumgartner WA, Kannan RM (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8:2134–2147CrossRefGoogle Scholar
  32. 32.
    Höbel S, Loos A, Appelhans D, Schwarz S, Seidel J, Voit B, Aigner A (2011) Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): physicochemical and biological properties of DNA and siRNA complexes. J Control Release 149:146–158CrossRefGoogle Scholar
  33. 33.
    Polikarpov N, Appelhans D, Welzel P, Kaufmann A, Dhanapal P, Bellmanna C, Voit B (2012) Tailoring uptake and release of ATP by dendritic glycopolymer/PNIPAAm hydrogel hybrids: first approaches towards multicompartment release system. New J Chem 36:438–451CrossRefGoogle Scholar
  34. 34.
    Mohr K, Müller SS, Müller LK, Rusitzka K, Gietzen S, Frey H, Schmidt M (2014) Evaluation of multifunctional liposomes in human blood serum by light scattering. Langmuir 30:14954–14962CrossRefGoogle Scholar
  35. 35.
    Khan D, Rezler E, Lauer-Fields J, Fields G (2008) Effect of drug hydrophobicity on liposomal stability. Chem Biol Drug Des 71:3–7CrossRefGoogle Scholar
  36. 36.
    Appelhans D, Komber H, Quadir MA, Richter S, Swarz S, Van der Vlist J, Aigner A, Müller M, Loos K, Seidel J, Arndt KF, Haag R, Voit B (2009) Hyperbranched PEI with various oligosaccharide architectures: synthesis, characterization, ATP complexation, and cellular uptake properties. Biomacromolecules 10:1114–11124CrossRefGoogle Scholar
  37. 37.
    Smoluchowski M, Graetz L (1921) Handbuch der Elektrizität und de Magnetismus, 2nd edn. Barth, Verlag, Leipzig, p 366Google Scholar
  38. 38.
    Sze A, Erickson D, Ren L, Li JD (2003) Zeta-potential measurement of flat solid surfaces using electroosmotic flow and the slope of current-time method. Colloid Interface Sci 261:402–410CrossRefGoogle Scholar
  39. 39.
    Siegert AJF (1943) Radiation laboratory report No. 465. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  40. 40.
    Ionov M, Ciepluch K, Moreno BR, Appelhans D, Sánchez-Nieves J, Gómez R, de la Mata FJ, Munoz-Fernández MA, Bryszewska M (2013) Biophysical characterization of glycodendrimers as nano-carriers for HIV peptides. Curr Med Chem 20:3935–3943CrossRefGoogle Scholar
  41. 41.
    Ionov M, Ciepluch K, Garaiova Z, Melikishvili S, Michlewska S, Balcerzak L, Glinska S, Milowska K, Gomez-Ramirez R, de la Mata FJ, Shcharbin D, Waczulikowa I, Bryszewska M, Hianik T (2015) Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochim Biophys Acta 1848:907–915CrossRefGoogle Scholar
  42. 42.
    Tripp S, Appelhans D, Striegler C, Voit B (2014) Oligosaccharide shells as a decisive factor for moderate and strong ionic interactions of dendritic poly(ethylene imine) scaffolds under shear forces. Chemistry 20:8314–8319CrossRefGoogle Scholar
  43. 43.
    Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246:91–99CrossRefGoogle Scholar
  44. 44.
    Arteta Yanez M, Ainalem ML, Porcar L, Martel A, Coker H, Lundberg D, Chang DP, Soltwedel O, Barker R, Nylander T (2014) Interactiobs of PAMAM dendrimers with negatively charged model biomembranes. J Phys Chem B 118:12892–12906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • K. Ciepluch
    • 1
    • 2
  • B. Nyström
    • 2
  • D. Appelhans
    • 3
  • M. Zablocka
    • 4
  • M. Bryszewska
    • 1
  • J. P. Majoral
    • 5
  1. 1.Department of General BiophysicsUniversity of LodzLodzPoland
  2. 2.Department of ChemistryUniversity of OsloBlindernNorway
  3. 3.Leibniz Institute of Polymer Research DresdenDresdenGermany
  4. 4.Centre of Molecular and Macromolecular StudiesPolish Academy of ScienceLodzPoland
  5. 5.Laboratorie de Chimie de Coordination, CNRSToulouseFrance

Personalised recommendations