Interfacial effects on dielectric properties of ethylene propylene rubber–titania nano- and micro-composites

  • S. Javadi
  • M. Sadroddini
  • M. Razzaghi-KashaniEmail author
  • P. N. B. Reis
  • A. A. Balado
Original Paper


The influence of titania particle size on dielectric properties of ethylene–propylene rubber (EPR) composites was investigated, with an emphasis on the chain dynamics in the interphase region. We hypothesized that a reduction in the conformational entropy of rubber chains in the interphase region would make the restricted chains more prone to orient along the applied electric field and increase dielectric permittivity than the chains in the bulk. The morphology and microstructure of the composites was characterized using scanning electron microscopy and atomic force microscopy, and a notable difference was detected in the average aggregate size and microstructure of the interphase between the nano- and micro-composites. We predicted that the physical attraction between nano- and micro-fillers and polymer, as characterized by the surface energy of fillers, would be similar. However, differences in the chain dynamics investigated by dynamic mechanical thermal analysis and dielectric spectroscopy confirmed the presence of more restricted chains, quantitatively and qualitatively, in the interphase region of the nanocomposites compared to the micro-composites. We concluded that the higher dielectric properties of the nanocomposites could be explained by the lower conformational entropy of chains in these composites compared to those in the micro-composites.


Nano- and micro-composites Dielectric properties Chain dynamics Interfacial effects Ethylene propylene rubber Titania 



The authors would like to thank Dr. Yakup Ulcer from ENPLAST, Turkey, for providing the EPR sample for this research and CEMUC for the AFM characterization.


  1. 1.
    Shi SL, Zhang LZ, Li JS (2009) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16:395–399CrossRefGoogle Scholar
  2. 2.
    Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813CrossRefGoogle Scholar
  3. 3.
    Murugaraj P, Mainwaring D, Mora Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304–6CrossRefGoogle Scholar
  4. 4.
    Ju S, Zhang H, Chen M, Zhang CX, Zhang Z (2014) Improved electrical insulating properties of LDPE based nanocomposite: Effect of surface modification of magnesia nanoparticles. Compos Part A 66:183–192CrossRefGoogle Scholar
  5. 5.
    Gan YX (2009) Effect of interface structure on mechanical properties of advanced composite materials. Int J Mol Sci 10:5115–5134CrossRefGoogle Scholar
  6. 6.
    Wu Q, Li M, Gu Y, Li Y, Zhang Z (2014) Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite. Compos Part A 56:143–149CrossRefGoogle Scholar
  7. 7.
    Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573CrossRefGoogle Scholar
  8. 8.
    Kader MA, Kim K, Lee YS, Nah C (2006) Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. J Mater Sci 41:7341–7352CrossRefGoogle Scholar
  9. 9.
    Lopez Martinez EI, Marquez Lucero A, Hernandez Escobar CA (2007) Incorporation of silver/carbon nanoparticles into poly(methyl methacrylate) via in situ miniemulsion polymerization and its influence on the glass-transition temperature. J Polym Sci B 45:511–518CrossRefGoogle Scholar
  10. 10.
    Moll J, Kumar SK (2012) Glass transitions in highly attractive highly filled polymer nanocomposites. Macromolecules 45:1131–1135CrossRefGoogle Scholar
  11. 11.
    Otegui J, Schwartz GA, Cerveny S (2013) Influence of water and filler content on the dielectric response of silica-filled rubber compounds. Macromolecules 46:2407–2416CrossRefGoogle Scholar
  12. 12.
    Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41:1289–1296CrossRefGoogle Scholar
  13. 13.
    Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41:2727–2731CrossRefGoogle Scholar
  14. 14.
    Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282CrossRefGoogle Scholar
  15. 15.
    Hub C, Harton SE, Hunt MA, Fink R, Ade H (2007) Influence of sample preparation and processing on observed glass transition temperatures of polymer nanocomposites. J Polym Sci B Polym Phys 45:2270–2276Google Scholar
  16. 16.
    Ash BJ, Siegel RW, Schadler LS (2004) Glass transition temperature behavior of alumina/PMMA nanocomposites. Macromolecules 37:1358–1369CrossRefGoogle Scholar
  17. 17.
    Bansal A, Yang H, Li C, Cho K, Benicewicz BC (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693–698CrossRefGoogle Scholar
  18. 18.
    Lipatov YS, Moisya YG, Semenovich GM (1977) Packing density of the chains in the boundary layers of polymers. Vysokomol Soyed A19:125–128Google Scholar
  19. 19.
    Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M (2008) Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films. J Eur Ceram Soc 28:117–122CrossRefGoogle Scholar
  20. 20.
    Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R (2008) Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Technol 68:106–112CrossRefGoogle Scholar
  21. 21.
    Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly (vinylidene fluoride) nanocomposite. Appl Phys Lett 90:012901–3CrossRefGoogle Scholar
  22. 22.
    Dang ZM, Wang HY, Peng B, Nan CW (2008) Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J Electroceram 21:381–384CrossRefGoogle Scholar
  23. 23.
    Roy M, Nelson JK, MacCrone RK, Schadler LS (2005) Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–643CrossRefGoogle Scholar
  24. 24.
    Singha S, Thomas M (2008) Dielectric properties of epoxy nanocomposites. J IEEE Trans Dielectr Electr Insul 15:12–23CrossRefGoogle Scholar
  25. 25.
    Vo HT, Shi FG (2002) Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectronics 33:409–415CrossRefGoogle Scholar
  26. 26.
    Todd MG, Shi FG (2005) Complex permittivity of composite systems: a comprehensive interphase approach. IEEE Trans Dielectr Electr Insul 12:601–611CrossRefGoogle Scholar
  27. 27.
    Marinel S, Choi DH, Heuguet R, Agrawal D, Lanagan M (2013) Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram Int 39:299–306CrossRefGoogle Scholar
  28. 28.
    Tareev B (1979) Physics of Dielectric Materials. Mir Publishers, MoscowGoogle Scholar
  29. 29.
    Liu GZ, Wang C, Wang Ch C, Qiu J, He M, Xing J, Jin KJ, Lu HB, Yang GZ (2008) Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors. Appl Phys Lett 92:122903CrossRefGoogle Scholar
  30. 30.
    Razzaghi-Kashani M, Gharavi N, Javadi S (2008) The effect of organo-clay on the dielectric properties of silicone rubber. Smart Mater Struct 17:065035 (9pp) CrossRefGoogle Scholar
  31. 31.
    Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816CrossRefGoogle Scholar
  32. 32.
    Fritzsche J, Kluppel M (2011) Structural dynamics and interfacial properties of filler-reinforced elastomers. J Phys Condens Matter 23:035104CrossRefGoogle Scholar
  33. 33.
    Pourhossaini M-R, Razzaghi-Kashani M (2014) Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 55:2279–2284CrossRefGoogle Scholar
  34. 34.
    Wang X, Robertson CG (2005) Strain-induced nonlinearity of filled rubbers. Phys Rev E 72(3):031406CrossRefGoogle Scholar
  35. 35.
    Anne-Marie J, Dwight HD (1995) Dielectric relaxation properties of filled ethylene propylene rubber. IEEE Trans Dielectr Electr Insul 2:394–408CrossRefGoogle Scholar
  36. 36.
    Anne-Marie J (1993) A study of dielectric relaxations in filled ethylene propylene copolymer. PhD Thesis, University of ConnecticutGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • S. Javadi
    • 1
  • M. Sadroddini
    • 1
  • M. Razzaghi-Kashani
    • 1
    Email author
  • P. N. B. Reis
    • 2
  • A. A. Balado
    • 3
  1. 1.Polymer Engineering Department, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Electromechanical DepartmentUniversity of Beira InteriorCovilhãPortugal
  3. 3.Department of PhysicsUniversitat Jaume ICastellónSpain

Personalised recommendations