Rheological fingerprints of time-evolving polymer-particle interaction and sol–gel transition in silver pastes

  • Jung-Shiun Jiang
  • Jau-En Liang
  • Han-Liou Yi
  • Shu-Hua Chen
  • Chi-Chung Hua
Original Paper


The performances of a conducting paste and the thick film fabricated from it depend critically on the dispersion state of the functional powders. Detailed mechanisms dictating the interactions between functional powder, surfactant, and, in particular, polymer binder that lead to optimum particle dispersion remain elusive in general. For a series of practical micrometer-sized silver pastes (with a powder content of ~47 wt% or 7 vol%, in a commonly used solvent α-terpineol), we reported rheological fingerprints (i.e., significantly promoted sample elasticity) suggesting that while the surfactant (stearic acid, SA) aids the initial, local (~1 nm) particle dispersion, the polymer binder (ethyl cellulose, EC) then becomes effective to help achieve larger-scale (~30 nm) particle dispersion, permitting the development of colloidal fractals and time-evolving microphase transition closely mimicking typical sol–gel transition. The enhanced particle dispersion is evidenced also by the scanning electronic microscope morphologies of dried printing thick films. Overall, similar phase transition had rarely been reported for metal pastes, yet the underlying particle dispersion seems crucial to achieve as (environmentally required) decreasing powder content makes a paste and the fabricated thick film increasingly unlikely to fulfill the percolated state desirable for efficient electron conduction.


Rheology Polymer binder Silver paste Particle network Sol–gel transition 



This research was supported in part by China Steel Corporation of ROC and in part by the Ministry of Science and Technology of ROC.


  1. 1.
    Lange FF (1989) Powder processing science and technology for increased reliability. J Am Ceram Soc 72:3–15CrossRefGoogle Scholar
  2. 2.
    Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359CrossRefGoogle Scholar
  3. 3.
    Sigmund WM, Bell NS, Bergström L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574CrossRefGoogle Scholar
  4. 4.
    Phair JW (2008) Rheological analysis of concentrated zirconia pastes with ethyl cellulose for screen printing SOFC electrolyte films. J Am Ceram Soc 91:2130–2137CrossRefGoogle Scholar
  5. 5.
    Somalu MR, Brandon NP (2012) Rheological studies of nickel/scandia-stabilized-zirconia screen printing inks for solid oxide fuel cell anode fabrication. J Am Ceram Soc 95:1220–1228CrossRefGoogle Scholar
  6. 6.
    Somalu MR, Yufit V, Shapiro IP, Xiao P, Brandon NP (2013) The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes. Int J Hydrogen Energy 38:6789–6801CrossRefGoogle Scholar
  7. 7.
    Murakami S, Ri K, Itoh T, Izu N, Shin W, Inukai K, Takahashi Y, Ando Y (2014) Effects of ethyl cellulose polymers on rheological properties of (La, Sr)(Ti, Fe)O3-terpineol pastes for screen printing. Ceram Int 40:1661–1666CrossRefGoogle Scholar
  8. 8.
    Inukai K, Takahashi Y, Murakami S, Ri K, Shin W (2014) Molecular weight dependence of ethyl cellulose adsorption behavior on (La, Sr)(Ti, Fe)O3−δ particles in organic solvent pastes and their printing properties. Ceram Int 40:12319–12325CrossRefGoogle Scholar
  9. 9.
    Wang SF, Dougherty JP, Huebner W, Pepin JG (1994) Silver-palladium thick-film conductors. J Am Ceram Soc 77:3051–3072CrossRefGoogle Scholar
  10. 10.
    Lin H-C, Lin P, Lu C-A, Wang S-F (2009) Effects of silver oxalate additions on the physical characteristics of low-temperature-curing MOD silver paste for thick-film applications. Microelectron Eng 86:2316–2319CrossRefGoogle Scholar
  11. 11.
    Hsu CP, Guo RH, Hua CC, Shih C-L, Chen W-T, Chang T-I (2013) Effect of polymer binders in screen printing technique of silver pastes. J Polym Res 20:1–8CrossRefGoogle Scholar
  12. 12.
    Lin JC, Wang CY (1996) Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater Chem Phys 45:136–144CrossRefGoogle Scholar
  13. 13.
    Bergström L, Shinozaki K, Tomiyama H, Mizutani N (1997) Colloidal processing of a very fine BaTiO3 powder—effect of particle interactions on the suspension properties, consolidation, and sintering behavior. J Am Ceram Soc 80:291–300CrossRefGoogle Scholar
  14. 14.
    Liu D-M (2000) Influence of dispersant on powders dispersion and properties of zirconia green compacts. Ceram Int 26:279–287CrossRefGoogle Scholar
  15. 15.
    Morissette SL, Lewis JA, Clem PG, Cesarano J III, Dimos DB (2001) Direct-write fabrication of Pb(Nb, Zr, Ti)O3 devices: influence of paste rheology on print morphology and component properties. J Am Ceram Soc 84:2462–2468CrossRefGoogle Scholar
  16. 16.
    Rane SB, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Influence of surfactants treatment on silver powder and its thick films. Mater Lett 57:3096–3100CrossRefGoogle Scholar
  17. 17.
    Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245CrossRefGoogle Scholar
  18. 18.
    Zürcher S, Graule T (2005) Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. J Eur Ceram Soc 25:863–873CrossRefGoogle Scholar
  19. 19.
    Lee S, Paik U, Yoon S-M, Choi J-Y (2006) Dispersant-ethyl cellulose binder interactions at the Ni particle-dihydroterpineol interface. J Am Ceram Soc 89:3050–3055CrossRefGoogle Scholar
  20. 20.
    Shin W, Nishibori M, Ohashi M, Izu N, Itoh T, Matsubara I (2009) Ceramic catalyst combustors of Pt-loaded-alumina on microdevices. J Ceram Soc Jpn 117:659–665CrossRefGoogle Scholar
  21. 21.
    Phair JW, Lönnroth N, Lundberg M, Kaiser A (2009) Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties. Colloids Surf A 341:103–109CrossRefGoogle Scholar
  22. 22.
    Zhang H, Jiang S, Kajiyoshi K (2011) Control of paste rheology and piezoelectric properties of Bi0.5(Na0.82K0.18)0.5TiO3 lead-free piezoelectric thick films deposited by screen printing. Int J Appl Ceram Technol 8:658–668CrossRefGoogle Scholar
  23. 23.
    Easton RP (1956) U. S. Patent 2,732,305Google Scholar
  24. 24.
    Tyran LW (1981) U. S. Patent 4,273,583 AGoogle Scholar
  25. 25.
    Bertrand F, German S-A, Anwar A, Irune V, Gemma B, Yolanda RDM, Bergström L (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14:023001CrossRefGoogle Scholar
  26. 26.
    Patel RD, Farrugia VM, Vanbesien D, Zwartz EG (2003) U. S. Patent 6,638,677 B2Google Scholar
  27. 27.
    Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In: David M B, Walters K (eds) Rheology reviews. British Society of RheologyGoogle Scholar
  28. 28.
    Liu D-M (1999) Effect of dispersants on the rheological behavior of zirconia-wax suspensions. J Am Ceram Soc 82:1162–1168CrossRefGoogle Scholar
  29. 29.
    Lange FF (2001) Shape forming of ceramic powders by manipulating the interparticle pair potential. Chem Eng Sci 56:3011–3020CrossRefGoogle Scholar
  30. 30.
    Horn RG (1990) Surface forces and their action in ceramic materials. J Am Ceram Soc 73:1117–1135CrossRefGoogle Scholar
  31. 31.
    French RH (2000) Origins and applications of London dispersion forces and Hamaker constants in ceramics. J Am Ceram Soc 83:2117–2146CrossRefGoogle Scholar
  32. 32.
    Nam J-G, Lee E-S, Jung W-C, Park Y-J, Sohn B-H, Park S-C, Kim JS, Bae J-Y (2009) Photovoltaic enhancement of dye-sensitized solar cell prepared from [TiO2/ethyl cellulose/terpineol] paste employing triton™ X-based surfactant with carboxylic acid group in the oxyethylene chain end. Mater Chem Phys 116:46–51CrossRefGoogle Scholar
  33. 33.
    Burnat D, Ried P, Holtappels P, Heel A, Graule T, Kata D (2010) The rheology of stabilised lanthanum strontium cobaltite ferrite nanopowders in organic medium applicable as screen printed SOFC cathode layers. Fuel Cells 10:156–165Google Scholar
  34. 34.
    Zhang R, Lin W, K-s M, Wong CP (2010) Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles. ACS Appl Mater Interfaces 2:2637–2645CrossRefGoogle Scholar
  35. 35.
    Goodarzi V, Jafari S, Khonakdar H, Seyfi J (2011) Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J Polym Res 18:1829–1839CrossRefGoogle Scholar
  36. 36.
    Ghelichi M, Taheri Qazvini N, Jafari S, Khonakdar H, Reuter U (2012) Nanoclay dispersion in a miscible blend: an assessment through rheological analysis. J Polym Res 19:1–9CrossRefGoogle Scholar
  37. 37.
    Sodeifian G, Nikooamal H, Yousefi A (2012) Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement. J Polym Res 19:1–12CrossRefGoogle Scholar
  38. 38.
    Chen Y, Chen Q, Lv Y, Huang Y, Yang Q, Liao X, Niu Y (2015) Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res 22:1–11CrossRefGoogle Scholar
  39. 39.
    Mewis J, Wagner NJ (2013) Colloidal suspension rheology. Cambridge University Press, New York, p 206Google Scholar
  40. 40.
    Lane CA, Burton DE, Crabb CC (1984) Accurate molecular dimensions from stearic acid monolayers. J Chem Educ 61:815CrossRefGoogle Scholar
  41. 41.
    Sperling LH (2006) Introduction to physical polymer science. Wiley, Hoboken, p 113Google Scholar
  42. 42.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  43. 43.
    Lu D, Tong QK, Wong CP (1999) A study of lubricants on silver flakes for microelectronics conductive adhesives. IEEE Trans Compon Packag Technol 22:365–371CrossRefGoogle Scholar
  44. 44.
    Kohinata S, Terao A, Shiraki Y, Inoue M, Uenishi K (2013) Relationship between the conductivity of isotropic conductive adhesives (ICAs) and the lubricant coated on silver filler particles. Trans Jpn Inst Electron Packag 6:104–108CrossRefGoogle Scholar
  45. 45.
    Joshi YM (2014) Dynamics of colloidal glasses and gels. Annu Rev Chem Biomol Eng 5:181–202CrossRefGoogle Scholar
  46. 46.
    Mahamuni S, Bendre BS, Leppert VJ, Smith CA, Cooke D, Risbud SH, Lee HWH (1996) ZnO nanoparticles embedded in polymeric matrices. Nanostruct Mater 7:659–666CrossRefGoogle Scholar
  47. 47.
    Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett 76:2901–2903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jung-Shiun Jiang
    • 1
  • Jau-En Liang
    • 1
  • Han-Liou Yi
    • 1
  • Shu-Hua Chen
    • 2
  • Chi-Chung Hua
    • 1
  1. 1.Department of Chemical EngineeringNational Chung Cheng UniversityChia YiRepublic of China
  2. 2.China Steel CorporationKaohsiung CityRepublic of China

Personalised recommendations