Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol

  • Fatih Doğan
  • İsmet Kaya
  • Ali Bilici
  • Mehmet Yıldırım
Original Paper

Abstract

Here the polymerization of 8-amino-2-naphthol (AN) is reported without use of an additional external template, surfactants or functional dopants. For this, NaOCl and hydrochloride acid solution (1.0 M) were used as oxidant and reaction medium, respectively. The structure of oligomer was elucidated by FT-IR, UV–vis and 1H-NMR techniques. The number average molecular weight of oligomer was found to be 2200 Da with a polydispersity index of 1.4 by size exclusion chromatography. This oligomer exhibited a multicolor emission behavior as it was excited at different wavelenghts. Redox states were clarified by cyclic voltammetry (CV) technique and the relationship between anodic/cathodic peak currents vs. scan rates was determined. Thermal analysis and XRD data assigned that the resulting oligomer was in a semi-crystalline form. The activation energy related to the solid state decomposition was calculated from differential and integral non-isothermal methods and the lowest value using Kissinger procedures was determined to be 79.53 kJ/mol in N2 atmosphere.

Keywords

Oxidative polymerization Hydroxynaphthylamine Multichromism Activation energy Cyclic voltammetry 

References

  1. 1.
    Economopoulos SP, Andreopoulou AK, Gregoriou VG, Kallitsis JK (2005) Chem Mater 17:1063–1071CrossRefGoogle Scholar
  2. 2.
    Huang WY, Yun H, Lin HS, Kwei TK, Okamoto Y (1999) Macromolecules 32:8089–8093CrossRefGoogle Scholar
  3. 3.
    Kimyonok A, Wang XY, Weck M (2006) J Macromol Sci C Polym Rev J 46:47–77CrossRefGoogle Scholar
  4. 4.
    Anselmo AS, Lindgren LJ, Rysz J, Bernasik A, Budkowski A, Andersson MR, Svensson K, van Stam J, Moons E (2011) Chem Mater 23:2295–2302CrossRefGoogle Scholar
  5. 5.
    Hellstrom S, Lindgren LJ, Zhou Y, Zhang FL, Inganas O, Andersson MR (2010) Polym Chem 1:1272–1280CrossRefGoogle Scholar
  6. 6.
    Bai H, Shi G (2007) Sensors 7:267–274CrossRefGoogle Scholar
  7. 7.
    Wilson R, Turner APF (1992) Biosens Bioelectron 7:165–185CrossRefGoogle Scholar
  8. 8.
    Ram MK, Sundaresan NS, Malhotra BD (1994) J Mater Sci Lett 13:1490–1493CrossRefGoogle Scholar
  9. 9.
    Meyer WH, Kiess H, Binggeli B, Meier E, Harbeke G (1985) Synth Met 10:255–259CrossRefGoogle Scholar
  10. 10.
    Trivedi DC, Dhawan SK (1993) Synth Met 59:267–272CrossRefGoogle Scholar
  11. 11.
    Nalwa HS (ed) (1997) Handbook of organic conductive materials and polymers. Wiley, New YorkGoogle Scholar
  12. 12.
    Rizzo A, Solin N, Lindgren LJ, Andersson MR, Inganas O (2010) Nano Lett 10:2225–2230CrossRefGoogle Scholar
  13. 13.
    Zhao C, Wang H, Jiang Z (2003) Appl Surf Sci 207:6–12CrossRefGoogle Scholar
  14. 14.
    Cutler CA, Burrell AK, Collis GE, Dastoor PC, Officer DL, Too CO, Wallace GG (2001) Synth Met 123:225–237CrossRefGoogle Scholar
  15. 15.
    Li S, Li Z, Fang X, Chen GQ, Huang Y, Xu K (2008) J Appl Polym Sci 110:2085–2093CrossRefGoogle Scholar
  16. 16.
    Moon DK, Kohtaro O, Tsukasa M, Takakazu Y (1993) Macromolecules 26:6992–6997CrossRefGoogle Scholar
  17. 17.
    Li X, Sun C, Wei Z (2005) Synth Met 155:45–50CrossRefGoogle Scholar
  18. 18.
    Arévalo AH, Fernández H, Silber JJ, Sereno L (1990) Electrochim Acta 35:741–748CrossRefGoogle Scholar
  19. 19.
    Kobayashi S, Makino A (2009) Chem Rev 109:5288–5353CrossRefGoogle Scholar
  20. 20.
    Liu W, Bian S, Li L, Samuelson L, Kumar J, Tripathy S (2000) Chem Mater 12:1577–1584CrossRefGoogle Scholar
  21. 21.
    Bilici A, Kaya İ, Yıldırım M (2010) Biomacromolecules 11:2593–2601CrossRefGoogle Scholar
  22. 22.
    Bilici A, Doğan F, Yıldırım M, Kaya İ (2011) React Funct Polym 71:675–683CrossRefGoogle Scholar
  23. 23.
    Diaz FR, Moreno J, Tagle LH, East GA, Radic D (1999) Synth Met 100:187–194CrossRefGoogle Scholar
  24. 24.
    Cervini R, Li XC, Spencer GWC, Holmes AB, Moratti SC, Friend RH (1997) Synth Met 84:359–360CrossRefGoogle Scholar
  25. 25.
    Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067–1071CrossRefGoogle Scholar
  26. 26.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, Plenum Publishers, New YorkCrossRefGoogle Scholar
  27. 27.
    Dao LH, Leclerc M, Guay J, Chevalier JW (1989) Synth Met 29:377–382CrossRefGoogle Scholar
  28. 28.
    Kuramoto N, Tomita A (1997) Synth Met 88:147–151CrossRefGoogle Scholar
  29. 29.
    Agrawal AK, Jenekhe SA (1993) Macromolecules 26:895–905CrossRefGoogle Scholar
  30. 30.
    Jenekhe SA, Alam MM, Zhu Y, Jiang S, Shevade AV (2007) Adv Mater 19:536–542CrossRefGoogle Scholar
  31. 31.
    Mostefai M, Pham MC, Marsault JP, Aubard J, Lacaze PC (1996) J Electrochem Soc 143:2116–2119CrossRefGoogle Scholar
  32. 32.
    Pham MC, Lacaze PC, Dao LH (1994) Synth Met 68:39–47CrossRefGoogle Scholar
  33. 33.
    Li XG, Huang MR, Yang Y (2000) Polym J 32:348–353CrossRefGoogle Scholar
  34. 34.
    Longun J, Buschle B, Nguyen N, Lo M, Iroh JO (2010) J Appl Polym Sci 118:3123–3130CrossRefGoogle Scholar
  35. 35.
    Kamahara K, Honda Y, Watanabe T, Kuwahara M (2000) Appl Microbiol Biotechnol 54:104–111CrossRefGoogle Scholar
  36. 36.
    Qu L, Shi G (2004) Chem Commun 24:2800–2801CrossRefGoogle Scholar
  37. 37.
    Vaganova E, Rozenberg M, Yitzchaik S (2000) Chem Mater 12:261–263CrossRefGoogle Scholar
  38. 38.
    Yang W, Pan CY, Luo MD, Zhang HB (2010) Biomacromolecules 11:1840–1846CrossRefGoogle Scholar
  39. 39.
    Feist FA, Basch TJ (2008) Phys Chem B 112:9700–9708CrossRefGoogle Scholar
  40. 40.
    Lu B, Xu J, Fan C, Jiang F, Miao H (2008) Electrochim Acta 54:334–340CrossRefGoogle Scholar
  41. 41.
    Bilici A, Dogan F, Yıldırım M, Kaya İ (2012) J Phys Chem C 116:19934–19940CrossRefGoogle Scholar
  42. 42.
    Yıldırım M, Kaya İ (2012) Synth Met 162:2443–2450CrossRefGoogle Scholar
  43. 43.
    Mordzinski A, Kuehnle W (1986) J Phys Chem 90:1455–1458CrossRefGoogle Scholar
  44. 44.
    Rodembusch FS, Leusin FP, Bordignon LB, Gallas MR, Stefani V (2005) J Photochem Photobiol A Chem 173:81–92CrossRefGoogle Scholar
  45. 45.
    Kaya İ, Temizkan K, Aydın A (2013) J Electroanal Chem 708:54–61CrossRefGoogle Scholar
  46. 46.
    Seo ET, Nelson RF, Fritsh JM, Marcoux LS, Leedy DW, Adams RN (1966) J Am Chem Soc 88:3498–3503CrossRefGoogle Scholar
  47. 47.
    Tsai FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) Macromolecules 38:1958–1966CrossRefGoogle Scholar
  48. 48.
    Kaya İ, Yıldırım M, Aydın A, Şenol D (2010) React Funct Polym 70:815–826CrossRefGoogle Scholar
  49. 49.
    Dubey S, Singh D, Misra RA (1998) Enzyme Microb Technol 23:432–437CrossRefGoogle Scholar
  50. 50.
    Li XG, Hou ZZ, Huang MR, Moloney MG (2009) J Phys Chem C 113:21586–21595CrossRefGoogle Scholar
  51. 51.
    Peng Y, Liu H, Zhang X (2009) J Polym Sci A:Polym Chem 47:1627–1635CrossRefGoogle Scholar
  52. 52.
    Li XG, Huang MR, Duan W, Yang YL (2002) Chem Rev 102:2925–3030CrossRefGoogle Scholar
  53. 53.
    Li XG, Huang MR, Yang Y (2001) Polymer 42:4099–4107CrossRefGoogle Scholar
  54. 54.
    Flynn J, Wall L (1966) J Polym Sci B Polym Lett 4:323–328CrossRefGoogle Scholar
  55. 55.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1886CrossRefGoogle Scholar
  56. 56.
    Tang W, Liu Y, Yang X, Wang C (2004) Ind Eng Chem Res 43:2054–2059CrossRefGoogle Scholar
  57. 57.
    Kissinger HF (1957) Anal Chem 29:1702–1706CrossRefGoogle Scholar
  58. 58.
    Akahira T, Sunose T (1971) Res Rep Chiba Inst Techn 16:22–33Google Scholar
  59. 59.
    Friedman HL (1965) J Polym Sci C 6:183–195CrossRefGoogle Scholar
  60. 60.
    Kim S, Park JK (1995) Thermochim Acta 264:137–156CrossRefGoogle Scholar
  61. 61.
    Criado JM, Sanchez-Jimenez PE, Perez-Maqueda LA (2008) J Therm Anal Calorim 92:199–203CrossRefGoogle Scholar
  62. 62.
    Vyazovkin S (2001) J Comput Chem 22:178–183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fatih Doğan
    • 1
    • 2
  • İsmet Kaya
    • 1
  • Ali Bilici
    • 1
  • Mehmet Yıldırım
    • 1
    • 3
  1. 1.Department of Chemistry, Polymer Synthesis and Analysis LabÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  2. 2.Faculty of Education, Secondary Science and Mathematics EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  3. 3.Faculty of Engineering, Department of Materials Science & EngineeringÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations