Journal of Polymer Research

, 22:621 | Cite as

Evaluation of viscosity and shear stress in a telechelic polymer when various shear rates are applied

Original Paper
  • 194 Downloads

Abstract

We present the results of molecular dynamics (MD) simulations of bead and spring models of associating polymers at melt-like densities. We consider telechelic polymers of general formula AB12A at different values of shear rate. Under bulk conditions, A···A associations occur, leading to the construction of clusters or micelles that are interconnected by a number of bridging chains. This results in a physical gel or a reversible network, and the corresponding micelles assume different forms depending on the interaction strength. Whenever a low shear deformation is applied, the clusters are broken and there is a phase transition similar to that from a gel to a common non-Newtonian fluid. However, if the applied shear is increased, the chains stretch themselves (in a manner similar to nematic liquid crystal ordering) in a different way from what is seen without shear. In this work, we calculate the stress needed to yield a required deformation.

Keywords

Associating polymers Shear rate Molecular dynamics 

References

  1. 1.
    Rubinstein M, Dobryin AV (1997) Solutions of associating polymers. Trends Polym Sci 5:181–186Google Scholar
  2. 2.
    Muthumukar M, Ober CK, Thomas EL (1997) Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277:1225–1232CrossRefGoogle Scholar
  3. 3.
    De Genes PG (1994) Scaling concepts in polymer physics. Cornell University Press, New YorkGoogle Scholar
  4. 4.
    Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIP, New YorkGoogle Scholar
  5. 5.
    Israelachvili J (1992) Intermolecular and surface forces, 2nd edn. Academic, New YorkGoogle Scholar
  6. 6.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Eisenberg A, Kim JS (1998) Introduction to ionomers. Wiley–Interscience, New YorkGoogle Scholar
  8. 8.
    Winnik MA, Yekta A (1997) Associative polymers in aqueous solutions. Curr Opin Colloid Interface Sci 2:424–436CrossRefGoogle Scholar
  9. 9.
    Berret J-F, Calvet D, Collet A, Viguier M (2003) Fluorocarbon associative polymers. Curr Opin Colloid Interface Sci 8:296–306CrossRefGoogle Scholar
  10. 10.
    Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107Google Scholar
  11. 11.
    Kersey FR, Lee G, Piotr Marszalek P, Craig SL (2004) Surface to surface bridge formed by reversibly assembled polymers. J Am Chem Soc 126:3038–3039CrossRefGoogle Scholar
  12. 12.
    Guo X, Abdala AA, May BL, Lincoln SF, Khan SA, Prud’homme RK (2005) Novel associative polymers networks based on cyclodextrin inclusion compounds. Macromolecules 38:3037–3040CrossRefGoogle Scholar
  13. 13.
    Tanaka F (1998) Thermoreversible gelation of associating polymers. Phys A 257:245–255CrossRefGoogle Scholar
  14. 14.
    Tanaka F, Edwards SF (1992) Viscoelastic properties of physical cross-linked networks—transient network theory. Macromolecules 25:1516–1523Google Scholar
  15. 15.
    Wang SQ (1992) Transient network theory for shear-thickening fluids and physically cross-linked systems. Macromolecules 25:7003–7010CrossRefGoogle Scholar
  16. 16.
    Semenov AN, Joanny J-F, Khokhlov AR (1995) Associating polymers-equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075CrossRefGoogle Scholar
  17. 17.
    Semenov AN, Nyrkova IA, Cates ME (1995) Phase equilibria in solutions of associating telechelic polymers—rings vs. reversible network. Macromolecules 28:7879–7885Google Scholar
  18. 18.
    Semenov AN, Rubinstein M (1998) Thermoreversible gelation in solutions of associating polymers. 1. Statistics. Macromolecules 31:1373–1385Google Scholar
  19. 19.
    Rubinstein M, Semenov AN (1998) Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31:1386–1397Google Scholar
  20. 20.
    Vaccaro A, Marrucci G (2000) A model for the nonlinear rheology of associating polymers. J Non-Newtonian Fluid Mech 92:261–273CrossRefGoogle Scholar
  21. 21.
    Clement F, Johner A, Joanny JF, Semenov AN (2000) Stress relaxation in telechelic gels. 1. Sticker extraction. Macromolecules 33:6148–6158CrossRefGoogle Scholar
  22. 22.
    Groot RD, Agterof WGM (1994) Monte Carlo study of associative polymer networks. 1. Equation of state. J Chem Phys 100:1649–1656Google Scholar
  23. 23.
    Groot RD, Agterof WGM (1994) Monte Carlo study of associative polymer networks. 2. Rheological aspects. J Chem Phys 100:1657–1664Google Scholar
  24. 24.
    Khalatur PG, Khokhlov AR, Kovalenko JN, Mologin DA (1999) Molecular dynamics study of the solutions of semiflexibile telechelic polymer chains with strongly associating end-groups. J Chem Phys 110:6039–6049CrossRefGoogle Scholar
  25. 25.
    Khalatur PG, Mologin DA (2001) Rheological properties of self associating polymer systems: nonequilibrium molecular dynamics simulations. J Mol Liq 91:205–217CrossRefGoogle Scholar
  26. 26.
    Xiao C, Heyes DM (2002) Brownian dynamics simulations of attractive polymers in solution. J Chem Phys 117:2377–2388CrossRefGoogle Scholar
  27. 27.
    Sung BJ, Yethiray A (2003) Monte Carlo simulations and integral equation theory for the structure of telechelic polymers. J Chem Phys 109:6916–6924CrossRefGoogle Scholar
  28. 28.
    Bedrov D, Smith GD, Douglas JF (2004) Structural and dynamic heterogeneity in a telechelic polymer solution. Polymer 45:3961–3966CrossRefGoogle Scholar
  29. 29.
    Ayyagari C, Bedrov D, Smith GD (2004) A molecular dynamics simulation study of the influence of free surfaces on the morphology of self-associating polymers. Polymer 45:4549–4558CrossRefGoogle Scholar
  30. 30.
    Malvaldi M, Allegra G, Ciardelli F, Raos G (2005) Structure of an associating polymer melt in narrow slits by molecular dynamics simulations. J Phys Chem B 109:18117–18126CrossRefGoogle Scholar
  31. 31.
    Manassero C, Raos G, Allegra G (2005) Structure of model telechelic polymer melts by computer simulation. J Macromol Sci B Phys 44:855–871CrossRefGoogle Scholar
  32. 32.
    Manassero C, Castellano C (2013) Telechelic melt polymer’s structure variation depending on shear deformation. J Macromol Sci B Phys 52:1465–1477CrossRefGoogle Scholar
  33. 33.
    Aoyagi T, Sawa F, Shoji T, Fukunaga H, Takimoto J, Doi, M (2002) A general purpose coarse-grained molecular dynamics program. Comput Phys Comm 145:267–279. http://octa.jp
  34. 34.
    Grest GS, Kremer K (1991) Dynamics of entangled polymer melts-a molecular dynamics simulation. J Chem Phys 92:5057–5086Google Scholar
  35. 35.
    Starr FW, Schrøder TB, Glotzer S (2002) Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35:4481–4492Google Scholar
  36. 36.
    Gupta RK (2000) Chapter 5. In: Polymer and composite rheology, 2nd edn. CRC, Boca RatonGoogle Scholar
  37. 37.
    Baird DG (2008) First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data. J Non-Newtonian Fluid Mech 148:13–23Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations