Fabrication and characterization of nanosilver intercalated graphene embedded poly(vinyl chloride)composite thin films

  • Narges Mohammadipour Saadatabadi
  • Mohammad Reza Nateghi
  • Mahmoud Borhanizarandi
Original Paper


Ag intercalated graphene nanoparticles were suspended in N, N-di-methylformamide (DMF) solution of poly(vinyl chloride) (PVC). Composite thin films were prepared by drop casting on a smooth surface followed by evaporation of the solvent. Conducting nanoparticles were uniformly decorated into the polymer matrix. Composites were characterized by UV–vis spectroscopy, SEM, EDX, TEM, and XRD techniques. Electrical, mechanical and thermal characteristics of the thin films were investigated. Electrical resistance measurements reveal that the composite layers show very low percolation threshold (0.8 wt.% of conducting phase) and maximum electrical conductivity of 4.23 × 10−5 S/cm achieve at 5.0 wt.% (3.02 vol.%) of the Ag/graphene (Ag/G) nanoparticles loading. A significant enhancement in the mechanical properties of pure PVC films was obtained with a 4.0 wt.% (2.42 vol.%) loading of Ag/G, so 422.7 % increase in Young’s modulus and an almost 320 % improvement of tensile strength were obtained. In addition the results of the thermogravimetric analysis showed that the composite thin films are thermally more stable than the pure PVC polymer layers.


Composite thin films Ag/G nanoparticles Electrical properties Mechanical properties 



The authors are thankful to Mrs. Samaneh Mozaffari from Department of physics, University of Yazd, for her helps.


  1. 1.
    Madaleno L, Schjødt-Thomsen J, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70:804–814Google Scholar
  2. 2.
    Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84CrossRefGoogle Scholar
  3. 3.
    Mamunya YP, Davydenko V, Pissis P, Lebedev E (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J38:1887–1897CrossRefGoogle Scholar
  4. 4.
    Mamunya YP, Levchenko V, Rybak A, Boiteux G, Lebedev E, Ulanski J, Seytre G (2010) Electrical and thermomechanical properties of segregated nanocomposites based on PVC and multiwalled carbon nanotubes. J Non-Cryst Solids 356:635–641CrossRefGoogle Scholar
  5. 5.
    Sangawar VS, Moharil NA (2012) Study of electrical, thermal and optical behavior of polypyrrole filled PVC: PMMA thin film thermoelectrets. Chem Sci Trans 1:447–455CrossRefGoogle Scholar
  6. 6.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  7. 7.
    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198–205CrossRefGoogle Scholar
  8. 8.
    Wang Z, Yang W, Liu X (2014) Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route. J Polym Res 21:358Google Scholar
  9. 9.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mcgovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRefGoogle Scholar
  10. 10.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRefGoogle Scholar
  11. 11.
    Sun Y, Shi G (2013) Graphene/polymer composites for energy applications. J Polym Sci Part B: Polym Phys 51:231–253CrossRefGoogle Scholar
  12. 12.
    Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077CrossRefGoogle Scholar
  13. 13.
    Folarin OM, Sadiku ER, Maity A (2011) Polymer-noble metal nanocomposites: review. Int J Phys Sci 6:4869–4882Google Scholar
  14. 14.
    Shih S-J, Chien I (2013) Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol 237:436–441CrossRefGoogle Scholar
  15. 15.
    Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6:1–8Google Scholar
  16. 16.
    Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinylchloride nanocomposites. J Polym Res 20:286CrossRefGoogle Scholar
  17. 17.
    Shanmugharaj A, Ryu SH (2012) Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process. Electrochim Acta 74:207–214CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Yang J, Cheng X, Zhao N, Sun L, Sun H, Li D (2012) Electrostatic self-assembly of graphene–silver multilayer films and their transmittance and electronic conductivity. Carbon 50:4343–4350CrossRefGoogle Scholar
  19. 19.
    Vadukumpully S, Paul J, Valiyaveettil S (2009) Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 47:3288–3294CrossRefGoogle Scholar
  20. 20.
    Pastoriza‐Santos I, Liz‐Marzán LM (2009) N, N‐dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110CrossRefGoogle Scholar
  22. 22.
    Taylan NB, Sari B, Unal HI (2010) Preparation of conducting poly(vinyl chloride)/polyindole composites and freestanding films via chemical polymerization. J Polym Sci Part B: Polym Phys 48:1290–1298CrossRefGoogle Scholar
  23. 23.
    Choi J-Y, Kim SW, Cho KY (2014) Improved thermal conductivity of graphene encapsulatedpoly(methyl methacrylate) nanocomposite adhesives with low loading amount of graphene. Compos Sci Technol 94:147–154CrossRefGoogle Scholar
  24. 24.
    Liang Y, Wu D, Feng X, Müllen K (2009) Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater 21:1679–1683CrossRefGoogle Scholar
  25. 25.
    Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nano sheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100CrossRefGoogle Scholar
  26. 26.
    Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2012) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. J Compos Sci Technol 67:2528–2534CrossRefGoogle Scholar
  27. 27.
    Saleem A, Frormann L, Iqbal A (2007) Mechanical, thermal and electrical resisitivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J Polym Res 14:121–127CrossRefGoogle Scholar
  28. 28.
    Shekhar S, Prasad V, Subramanyam S (2006) Structural and electrical properties of composites of polymer–iron carbide nanoparticles embedded in carbon. Mater Sci Eng B133:108–112CrossRefGoogle Scholar
  29. 29.
    Karayildirim T, Yanik J, Yuksel M, Saglam M, Vasile C, Bockhorn H (2006) The effect of some fillers on PVC degradation. J Anal Appl Pyrol 75:112–119CrossRefGoogle Scholar
  30. 30.
    Rajendran S, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Narges Mohammadipour Saadatabadi
    • 1
  • Mohammad Reza Nateghi
    • 2
  • Mahmoud Borhanizarandi
    • 1
  1. 1.Department of PhysicsUniversity of YazdYazdIran
  2. 2.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations