Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage

  • Rasha A. El-Ghazawy
  • Abdallah G. Mahmoud
  • M. João Ferreira
  • Clara S. B. Gomes
  • Pedro T. Gomes
  • K. A. Shaffei
  • Ayman M. Atta
Original Paper

Abstract

Based on Schiff base chemistry, crosslinked porous organic aminal networks were prepared using acetic acid as a catalyst. These Schiff base networks (SNWs) are polymeric materials based on melamine and 5,5′-methylene-bis-salicylaldehyde, with nitrogen contents as high as ca. 36 wt.%, which were characterized by FTIR spectroscopy, elemental analysis, and 13C and 15 N solid-state NMR spectroscopies. A series of polymer networks with different monomeric molar ratios and different amounts of added catalyst were explored, in order to study their effect on the final polymer structure, porosity and H2 storage capacity. These materials exhibit Brunauer-Emmett-Teller (BET) surface areas up to ca. 526 m2/g, as measured by N2 adsorption at 77 K, and exhibit gravimetric storage capacities up to 2.57 wt.% at 20 bar and 77 K.

Keywords

Aminal networks Hydrogen storage Melamine-based networks Porous polymers Schiffbase networks 

Supplementary material

10965_2014_480_MOESM1_ESM.pdf (29 kb)
ESM 1(PDF 29.1 kb)

References

  1. 1.
    Schlapbach L, Züttel A (2001) Nature 414:353–358CrossRefGoogle Scholar
  2. 2.
    Yang J, Sudik A, Wolverton C, Siegel DJ (2010) Chem Soc Rev 39:656–675CrossRefGoogle Scholar
  3. 3.
    US Department of Energy, Office of Energy Efficiency and Renewable Energy, and The FreedomCAR and Fuel Partnership, (2009) Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf
  4. 4.
    US Department of Energy, Stetson N (2013) Hydrogen Storage Program Overview, http://www.hydrogen.energy.gov/pdfs/progress13/iv_0_stetson_2013.pdf
  5. 5.
    Regli L, Zecchina A, Vitillo JG, Cocina D, Spoto G, Lamberti C, Lillerud KP, Olsbye U, Bordiga S (2005) Phys Chem Chem Phys 7:3197–3203CrossRefGoogle Scholar
  6. 6.
    Weitkamp J, Fritz M, Ernst S (1995) Int J Hydrogen Energy 20:967–970CrossRefGoogle Scholar
  7. 7.
    Zhao XB, Xiao B, Fletcher AJ, Thomas KM (2005) J Phys Chem B 109:8880–8888CrossRefGoogle Scholar
  8. 8.
    Panella B, Hirscher M, Roth S (2005) Carbon 43:2209–2214CrossRefGoogle Scholar
  9. 9.
    Meng S, Kaxiras E, Zhang Z (2007) Nano Lett 7:663–667CrossRefGoogle Scholar
  10. 10.
    Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Int J Hydrogen Energy 27:203–212CrossRefGoogle Scholar
  11. 11.
    Han SS, Furukawa H, Yaghi OM, Goddard WA (2008) J Am Chem Soc 130:11580–11581CrossRefGoogle Scholar
  12. 12.
    Germain J, Fréchet JMJ, Svec F (2007) J Mater Chem 17:4989–4997CrossRefGoogle Scholar
  13. 13.
    Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Chem Mater 19:2034–2048CrossRefGoogle Scholar
  14. 14.
    Wood CD, Tan B, Trewin A, Su F, Rosseinsky MJ, Bradshaw D, Sun Y, Zhou L, Cooper AI (2008) Adv Mater 20:1916–1921CrossRefGoogle Scholar
  15. 15.
    Shaffei KA, Atta AM, Gomes CSB, Gomes PT, El-Ghazawy RA, Mahmoud AG (2014) J Polym Res 21:245CrossRefGoogle Scholar
  16. 16.
    Belyakova LD, Schevchenko TI, Davankov VA, Tsyurupa MP, Nesmeyanov AN (1986) Adv Colloid Interface Sci 25:249–266CrossRefGoogle Scholar
  17. 17.
    Podlesnyuk VV, Hradil J, Králová E (1999) React Funct Polym 42:181–191CrossRefGoogle Scholar
  18. 18.
    McKeown NB, Budd PM (2006) Chem Soc Rev 35:675–683CrossRefGoogle Scholar
  19. 19.
    Mackintosh HJ, Budd PM, McKeown NB (2008) J Mater Chem 18:573–578CrossRefGoogle Scholar
  20. 20.
    Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Adv Mater 21:702–705CrossRefGoogle Scholar
  21. 21.
    Germain J, Fréchet JMJ, Svec F (2009) Small 5:1098–1111CrossRefGoogle Scholar
  22. 22.
    El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316:268–272CrossRefGoogle Scholar
  23. 23.
    Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Chem Mater 21:204–206CrossRefGoogle Scholar
  24. 24.
    McKeown NB, Budd PM (2010) Macromolecules 43:5163–5176CrossRefGoogle Scholar
  25. 25.
    Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A (2007) Chem Commun 67–69Google Scholar
  26. 26.
    Tsyurupa MP, Davankov VA (2006) React Funct Polym 66:768–779CrossRefGoogle Scholar
  27. 27.
    Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Angew Chem Int Ed 46:8574–8578CrossRefGoogle Scholar
  28. 28.
    Ahn J-H, Jang J-E, Oh C-G, Ihm S-K, Cortez J, Sherrington DC (2006) Macromolecules 39:627–632CrossRefGoogle Scholar
  29. 29.
    Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Chem Mater 17:1241–1247CrossRefGoogle Scholar
  30. 30.
    Yang SJ, Cho JH, Oh GH, Nahm KS, Park CR (2009) Carbon 47:1585–1591CrossRefGoogle Scholar
  31. 31.
    Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng X, Müllen K (2009) J Am Chem Soc 131:7216–7217CrossRefGoogle Scholar
  32. 32.
    Layer RW (1963) Chem Rev 63:489–510CrossRefGoogle Scholar
  33. 33.
    Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM (2009) J Am Chem Soc 131:4570–4571CrossRefGoogle Scholar
  34. 34.
    Pandey P, Katsoulidis AP, Eryazici I, Wu Y, Kanatzidis MG, Nguyen ST (2010) Chem Mater 22:4974–4979CrossRefGoogle Scholar
  35. 35.
    Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) J Am Chem Soc 133:19816–19822CrossRefGoogle Scholar
  36. 36.
    Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan X, Seki S, Stoddart JF, Yaghi OM (2011) Chem Mater 23:4094–4097CrossRefGoogle Scholar
  37. 37.
    Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM (2011) J Am Chem Soc 133:11478–11481CrossRefGoogle Scholar
  38. 38.
    Yang G, Han H, Du C, Luo Z, Wang Y (2010) Polymer 51:6193–6202CrossRefGoogle Scholar
  39. 39.
    Li G, Zhang B, Yan J, Wang Z (2014) Chem Commun 50:1897–1899CrossRefGoogle Scholar
  40. 40.
    Armarego WLF, Chai CLL (2009) Purification of Laboratory Chemicals. Elsevier Inc, BurlingtonGoogle Scholar
  41. 41.
    Marvel CS, Tarköy N (1957) J Am Chem Soc 79:6000–6002CrossRefGoogle Scholar
  42. 42.
    Bell RP, Bascombe KN, Coutrey JCM (1956) J Chem Soc 1286–1291Google Scholar
  43. 43.
    Mésangeau C, Yous S, Pérès B, Lesieur D, Besson T (2005) Tetrahedron Lett 46:2465–2468CrossRefGoogle Scholar
  44. 44.
    Kailasam K, Jun Y-S, Katekomol P, Epping JD, Hong WH, Thomas A (2010) Chem Mater 22:428–434CrossRefGoogle Scholar
  45. 45.
    Coullerez G, Léonard D, Lundmark S, Mathieu HJ (2000) Surf Interface Anal 29:431–443CrossRefGoogle Scholar
  46. 46.
    Meier RJ, Tiller A, Vanhommerig SAM (1995) J Phys Chem 99:5457–5464CrossRefGoogle Scholar
  47. 47.
    Larkin P (2011) Infrared and Raman Spectroscopy. Elsevier Inc, WalthamGoogle Scholar
  48. 48.
    Kaya I, Yildirim M (2009) Synth Met 159:1572–1582CrossRefGoogle Scholar
  49. 49.
    Baraka A, Hall PJ, Heslop MJ (2007) React Funct Polym 67:585–600CrossRefGoogle Scholar
  50. 50.
    Egger CC, Schädler V, Hirschinger J, Raya J, Bechinger B (2007) Macromol Chem Phys 208:2204–2214CrossRefGoogle Scholar
  51. 51.
    Subrayan RP, Jone FN (1996) J Appl Polym Sci 62:1237–1251CrossRefGoogle Scholar
  52. 52.
    Hindson JC, Ulgut B, Friend RH, Greenham NC, Norder B, Kotlewski A, Dingemans TJ (2010) J Mater Chem 20:937–944CrossRefGoogle Scholar
  53. 53.
    Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Chem Commun 230–231Google Scholar
  54. 54.
    McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A (2006) Angew Chem Int Ed 45:1804–1807CrossRefGoogle Scholar
  55. 55.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619Google Scholar
  56. 56.
    Hirscher M, Panella B (2007) Scr Mater 56:809–812CrossRefGoogle Scholar
  57. 57.
    Gadiou R, Saadallah S-E, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) Microporous Mesoporous Mater 79:121–128CrossRefGoogle Scholar
  58. 58.
    Panella B, Hirscher M, Pütter H, Müller U (2006) Adv Funct Mater 16:520–524CrossRefGoogle Scholar
  59. 59.
    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) J Am Chem Soc 128:3494–3495CrossRefGoogle Scholar
  60. 60.
    Thomas KM (2007) Catal Today 120:389–398CrossRefGoogle Scholar
  61. 61.
    Nijkamp MG, Raaymakers JEMJ, van Dillen AJ, de Jong KP (2001) Appl Phys A 72:619–623CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rasha A. El-Ghazawy
    • 3
  • Abdallah G. Mahmoud
    • 1
    • 2
  • M. João Ferreira
    • 1
  • Clara S. B. Gomes
    • 1
  • Pedro T. Gomes
    • 1
  • K. A. Shaffei
    • 2
  • Ayman M. Atta
    • 3
    • 4
  1. 1.Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Department of Chemistry, Faculty of ScienceHelwan UniversityAin Helwan, CairoEgypt
  3. 3.Egyptian Petroleum Research InstituteCairoEgypt
  4. 4.Surfactant Research Chair, Chemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations