Advertisement

Determination of the cross-linking degree of commercial ethylene-vinyl-acetate polymer by luminescence spectroscopy

  • Jan Caspar Schlothauer
  • Rojonirina Maryline Ralaiarisoa
  • Arnaud Morlier
  • Marc Köntges
  • Beate RöderEmail author
Original Paper

Abstract

Ethylene-Vinyl-Acetate is the most common encapsulation polymer in photovoltaic modules. Its degree of crosslinking is a critical parameter of the production process, greatly influencing the durability of the product. The luminescence of Ethylene-Vinyl-Acetate with UV excitation is presented here as a non-destructive method to determine the degree of crosslinking. The luminescence intensity increases with the degree of crosslinking. Supposing a linear correlation the method allows determining the degree of crosslinking with a relative precision of 12 %. This optical method it is suitable and comparatively easy to apply for an industrial in-line measurement.

Keywords

Luminescence Spectroscopy EVA Photovoltaics Cross-linking 

References

  1. 1.
    Hirschl C, Biebl - Rydlo M, DeBiasio M, Mühleisen W, Neumaier L, Scherf W, Oreski G, Eder G, Chernev B, Schwab W, Kraft M (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Sol Energy Mater Sol Cells 116(0):203–218. doi: 10.1016/j.solmat.2013.04.022 CrossRefGoogle Scholar
  2. 2.
    Czanderna AW, Pern FJ (1996) Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review. Sol Energy Mater Sol Cells 43(2):101–181CrossRefGoogle Scholar
  3. 3.
    Jordan DC, Kurtz SR (2013) Photovoltaic degradation rates—an analytical review. Prog Photovolt Res Appl 21(1):12–29. doi: 10.1002/pip.1182 CrossRefGoogle Scholar
  4. 4.
    Morlier A, Klotz S, Sczuka S, Kunze I, Schaumann I, Blankemeyer S, Siegert M, Döring T, Alshuth T, Giese U, Denz M, Köntges M Influence of the curing state of ethylene-vinyl acetate on photovoltaic modules aging. In: 28th European Photovoltaic Solar Energy Conference, 2013.Google Scholar
  5. 5.
    Jurga J, Voelkel A, Strzemiecka B (2009) Application of different analytical methods used in the study of the cross-linking of resins in intermediate-product used in manufacturing of abrasive articles. J Appl Polym Sci 112(6):3305–3312. doi: 10.1002/App.29840 CrossRefGoogle Scholar
  6. 6.
    Kajari-Schröder S, Eitner U, Oprisoni C, Alshuth T, Köntges M, Brendel R (2010) Modelling the Curing Dynamics of Ethylene-Vinyl Acetate. Paper presented at the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain,Google Scholar
  7. 7.
    ASTM International (2006) Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM International; SAI Global,Google Scholar
  8. 8.
    Schubnell M (2010) Investigation of curing reaction of EVA by DSC and DMA. Photovoltaics Int 7:131–137Google Scholar
  9. 9.
    Xia Z, Cunningham D, Wohlgemuth J (2009) A new Method for measuring crosslinking density in ethylene vinyl acetate-based encapsulant. Photovoltaics International 5 (150)Google Scholar
  10. 10.
    Stark W, Jaunich M, Bohmeyer W, Lange K (2012) Investigation of the crosslinking behaviour of ethylene vinyl acetate (EVA) for solar cell encapsulation by rheology and ultrasound. Polym Test 31:904–908CrossRefGoogle Scholar
  11. 11.
    Mühleisen W, Biebl-Rydlo M, Spielberger M (2011) Acoustic in situ Determination of EVA features. Paper presented at the 26th European Photovoltaic Solar Energy Conference,Google Scholar
  12. 12.
    Schulze S (2010) Verfahren und Vorrichtung zur Steuerung der Temperaturführung bei einem thermischen Laminationsprozess.Google Scholar
  13. 13.
    Li H-Y, Perret-Aebi L-E, Théron R, Ballif C, Luo Y, Lange RFM (2011) Optical transmission as a fast and non-destructive tool for determination of ethylene-co-vinyl acetate curing state in photovoltaic modules. Prog Photovolt: Res App:187–194Google Scholar
  14. 14.
    Schlothauer J, Jungwirth S, Köhl M, Röder B (2012) Degradation of the encapsulant polymer in outdoor weathered photovoltaic modules: spatially resolved inspection of EVA ageing by fluorescence and correlation to electroluminescence. SolEnergy Mater SolCells. doi: 10.1016/j.solmat.2012.03.022 Google Scholar
  15. 15.
    Köntges M, Kajari-Schröder S, Kunze I Cell cracks measured by UV fluorescence in the field. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference, 2012.Google Scholar
  16. 16.
    Röder B, Ermilov EA, Philipp D, Köhl M Observation of polymer degradation processes in photovoltaic modules via luminescence detection. In: SPIE 7048, Reliability of Photovoltaic Cells, Modules, Components, and Systems, 2008.Google Scholar
  17. 17.
    Jolliffe IT (2002) Principal Component Analysis. Springer series in statistics, 2nd Edition edn. Springer Series in Statistics,Google Scholar
  18. 18.
    Duarte AC, Capelo S (2006) Application of chemometrics in separation science. J Liq Chromatogr Relat Technol 29:1143–1176. doi: 10.1080/10826070600574929 CrossRefGoogle Scholar
  19. 19.
    Strzemiecka B, Heberger K, Voelkel A (2013) Similarity and grouping of perlite and zeolite abrasive fillers: a replacement test. J Appl Polym Sci 127(5):3839–3847. doi: 10.1002/App.37695 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jan Caspar Schlothauer
    • 1
  • Rojonirina Maryline Ralaiarisoa
    • 1
  • Arnaud Morlier
    • 2
  • Marc Köntges
    • 2
  • Beate Röder
    • 1
    Email author
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Institute for Solar Energy Research Hamelin (ISFH)EmmerthalGermany

Personalised recommendations