Structure and sorption properties of hypercrosslinked polystyrenes and magnetic nanocomposite materials based on them

  • Alexander V. Pastukhov
  • Vadim A. Davankov
  • Vladimir V. Volkov
  • Sergei V. Amarantov
  • Kseniya I. Lubentsova
Original Paper

Abstract

By using transition electron microscopy, X-ray diffraction and small-angle X-ray scattering technique porous structure of a series of polystyrene-type sorbents (microporous and biporous hypercrosslinked polystyrenes, mesoporous sorbent XAD-4) was investigated, as well as sizes of iron oxide nanoparticles introduced into their matrix. Nanocomposite sorbents have low density, a large inner surface area, and like the parent polymers, exhibit marked adsorption properties, e.g. take up from saturated vapors 1.4 g/g of iodine or 0.8 g/g chloropicrin. A general method for processing scattering data from polydisperse multicomponent systems, like the above nanocomposites, was suggested. A rather homogeneous distribution of scattering heterogeneities with radius around 3 nm was found to be characteristic of microporous hypercrosslinked polystyrenes. Radius of magnetic iron oxide (magnetite) nanoparticles varies in ranges of 2.1 ± 0.6 nm and 6.7 ± 3.8 nm for the above microporous and biporous hypercrosslinked polymers, while in the XAD-4 particles of all sizes from 1 to 10 nm are presented.

Keywords

Hypercrosslinked polystyrene Polymer-inorganic nanocomposites Magnetic sorbents Transmission electron microscopy Iron oxides Small-angle X-ray scattering 

Notes

Acknowledgments

This work was carried out with the support of Russian Foundation for Basic Research (RFBR) - International cooperation of the Russian-Belarusian research projects 2012–2013, grant № 12-03-90007-Bel_a.

References

  1. 1.
    Pomogailo AD, Rosenberg AS, Uflyand IE (2000) Metal nanoparticles in polymers. Chemistry, MoscowGoogle Scholar
  2. 2.
    Ambituashta RD, Sillanp M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49CrossRefGoogle Scholar
  3. 3.
    Marius MS, James PAB, Bahaj AS, Smallman DJ (2005) Development of a highly magnetic iron sulphide for metal uptake and magnetic separation. J Magn Magn Mater 293:567–571CrossRefGoogle Scholar
  4. 4.
    Kanayama TOH, Fukui S, Ogawa J, Sato T, Ooizumi M, Terasawa T, Itoh Y, Yabuno R (2008) Application of HTS bulk magnet system to the magnetic separation techniques for water purification. Physica C 468:2128–2132CrossRefGoogle Scholar
  5. 5.
    Kuznetsov AA, Filippov VI, Kutushov MV, Komissarova LK, Feldman MG, Kutukova EA, Lenskaya GA (1994) A method of blood purification in an extracorporeal system. Russ Patent 2008929 Pub. Date 15.03.1994Google Scholar
  6. 6.
    Kutushov MV, Kuznetsov AA, Filippov VI (1997) New method of biological fluids detoxification based on magnetic adsorbents. In: Häfeli U, Schütt W, Teller J, Zborowski M (eds) Scientific and clinical applications of magnetic carriers (Proceedings of an international conference on scientific and clinical applications of magnetic carriers, held September 5–7, 1996, in Rostock, Germany). Plenum, New YorkGoogle Scholar
  7. 7.
    Kutushov MV (2007) Magnetically operated absorbent and method for the production thereof. US Patent Application Publication 2007/071977 A1 Pub. Date 29.03.2007Google Scholar
  8. 8.
    Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Pol Sci 277:846–855CrossRefGoogle Scholar
  9. 9.
    Solntseva DP, Kalinina RN, Krasnov MS, Makarova EI (1998) Method of obtaining of modified sorbent. Russ Patent 2105015 Pub. Date 20.02.1998Google Scholar
  10. 10.
    Leun D, Sengupta AK (2000) Preparation and characterization of magnetically active polymeric particles (MAPPs) for complex environmental separations. Environ Sci Technol 34:3276–3282CrossRefGoogle Scholar
  11. 11.
    Kaminski MD, Nunez L (1999) Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution. J Magn Magn Mater 194:31–36CrossRefGoogle Scholar
  12. 12.
    Hernndez R, Sacristn J, Nogales A, Ezquerra TA (2009) Mijangos C. structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle x-ray scattering. Langmuir 25(22):13212–13218CrossRefGoogle Scholar
  13. 13.
    Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47:542–559CrossRefGoogle Scholar
  14. 14.
    Eid M (2013) Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 20:112CrossRefGoogle Scholar
  15. 15.
    Bardajee GR, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:298CrossRefGoogle Scholar
  16. 16.
    Wei S, Zhang Y, Xu J (2011) Preparation and properties of poly(acrylic acid-co-styrene)/Fe3O4 nanocomposites. J Polym Res 18:125–130CrossRefGoogle Scholar
  17. 17.
    Haldar I, Biswas M, Arabinda Nayak A (2012) Preparation and evaluation of microstructure, dielectric and conductivity (ac/dc) characteristics of a polyaniline/polyN-vinyl carbazole/Fe3O4 nanocomposite. J Polym Res 19:9951CrossRefGoogle Scholar
  18. 18.
    Ghorbani Z, Baharvand H, Nezhati MN, Panahi HA (2013) Magnetic polymer particles modified with β-cyclodextrin. J Polym Res 20:199CrossRefGoogle Scholar
  19. 19.
    Pastukhov AV, Tsyurupa MP, Davankov VA (1999) Hypercrosslinked polystyrene: a polymer in a non-classical physical state. J Polym Sci Part B Polym Phys 37:2324–2333CrossRefGoogle Scholar
  20. 20.
    Hypersol-MacronetTM Sorbent Resins (1995) Purolite technical bulletin. The Purolite Company, UKGoogle Scholar
  21. 21.
    Anisimova NY, Dolzhikova YI, Davankov VA, Pastukhov AV, Miljaeva SI, Senatov FS, Kiselevsky MV (2012) Hemocompatibility of nanostructured sorbents based on hypercrosslinked polymers of the styrosorb series. Russ J Biother 11(1):23–27Google Scholar
  22. 22.
    Anisimova NY, Dolzhikova YI, Davankov VA, Pastukhov AV, Miljaeva SI, Senatov FS, Kiselevsky MV (2012) Prospects for the application of biporous sorbents based on hypercrosslinked styrene polymers for the prevention and treatment of systemic purulent-septic complications. Nanotechnologies in Russia 7(5–6):318–326CrossRefGoogle Scholar
  23. 23.
    Pastukhov AV, Davankov VA, Volkov VV, Dembo KA, Zubavichus YV, Korlyukov AA, Filatova AG (2009) Magnetic nanocomposites based on hypercrosslinked polystyrenes. Bull Russ Acad Sci Phys 73(4):471–473CrossRefGoogle Scholar
  24. 24.
    Shen P, Jiang W, Wang F, Chen M, Ma P, Li F (2013) Preparation and characterization of Fe3O4@TiO2 shell on polystyrene beads. J Polym Res 20:252CrossRefGoogle Scholar
  25. 25.
    Pastukhov AV, Davankov VA (2011) Transmission electron microscopy of composite materials based on hypercrosslinked polystyrenes with nanodispersed inorganic compounds. Bull Russ Acad Sci Phys 75(9):1248–1250CrossRefGoogle Scholar
  26. 26.
    Svergun DI, Konarev PV, Volkov VV et al (2000) A small angle x-ray scattering study of the droplet–cylinder transition in oil-rich sodium bis-2-ethylhexylsulfosuccinate microemulsions. J Chem Phys 113(4):1651–1665CrossRefGoogle Scholar
  27. 27.
    Dennis JE, Gay DM, Welsch RE (1981) Algorithm 573 NL2SOL - an adaptive nonlinear least-squares algorithm [E4]. ACM Trans Math Softw 7(3):369–383CrossRefGoogle Scholar
  28. 28.
    Shantarovich VP, Suzuki T, He C, Djourelov N, Kevdina IB, Davankov VA, Pastukhov AV, Ito Y (2004) Positron annihilation in polymers with highly developed specific surface. Mater Sci Forum 445–446:346–348CrossRefGoogle Scholar
  29. 29.
    Tsyurupa MP, Pankratov YA, Tsvankin DY, Zhukov VP, Davankov VA (1985) Morphology of macroreticular isoporous styrene polymers “styrosorb”. Polym Sci USSR 27(2):377–385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexander V. Pastukhov
    • 1
  • Vadim A. Davankov
    • 1
  • Vladimir V. Volkov
    • 2
  • Sergei V. Amarantov
    • 2
  • Kseniya I. Lubentsova
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.A. V. Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations