Journal of Polymer Research

, 21:346 | Cite as

Required polymer lengths per precipitated protein molecule in protein-polymer interaction

  • Florian CapitoEmail author
  • Harald Kolmar
  • Bernd Stanislawski
  • Romas Skudas
Original Paper


Protein precipitation using non-charged and charged polymers is a common method for protein purification, gaining broader interest among manufacturers in downstream processing. While during polymer- surface interactions, the formation of loops, tails and trains has been known for quite a long time, details of polymer conformation and chain length, interacting with the protein during protein precipitation are not fully discovered. Our research presents a more profound understanding of polymer-protein interaction, combining fluorescence and infrared spectroscopic measurements of proteins and polymer standards with well defined chain length to confirm different models of protein-polymer interaction. Lysozyme, chymotrypsinogen A, myoglobin and a monoclonal antibody, all of different molecular weight, isoelectric point and charge distribution at the protein surface, were used for protein-polymer precipitation. The use of polymers of various charge density and chain length showed that the required polymer length per precipitated protein (Ldef) is up to 25-times larger than the diameter of the corresponding protein, depending on the surface charge distribution of the protein, and its isoelectric point, as well as the charge density of the polymer. Our results support proposed mechanisms of polymer wrapping and loop formation for optimal charge neutralization during complexation and imply interaction of several polymer chains per precipitated protein molecule. Electrophoretic light scattering showed a qualitative correlation of the zeta potential of analyzed polymers with their corresponding Ldef values. Comparing protein precipitation behavior of long and short polymer chains, the latter exhibited reduced precipitation efficiency, visible as elevated Ldef.


Protein-polymer interaction Chain length Precipitation conditions Zeta potential 



The authors thank Merck KGaA for financial and material support. Thanks to Johann Bauer and Stephan von der Au, both Merck KGaA for helpful advice and supplying the Zetasizer Nano. Part of this work was performed within the frame of the project BIOPUR and IOLIPRO, funded by the German Federal Ministry of Education and Research (BMBF). We thank Charly Hohlschuh, Merck KGaA, for language assistance and proof reading.

Supplementary material

10965_2013_346_MOESM1_ESM.pdf (354 kb)
ESM 1 (PDF 354 kb)


  1. 1.
    Muzzarelli RAA, Weckx M, Fillipini O, Lough C (1989) Carbohydr Polym 11:293–296CrossRefGoogle Scholar
  2. 2.
    Bolto B, Gregory J (2007) Water Res 41:2301–2324CrossRefGoogle Scholar
  3. 3.
    Shahidi F, Synowiecki J (1991) J Agric Food Chem 39:1527–1532CrossRefGoogle Scholar
  4. 4.
    Sudharshan NR, Hoover DG, Knorr D (1992) Food Biotechnol 6:257–272CrossRefGoogle Scholar
  5. 5.
    Papineau AM, Hoover DG, Knorr D, Farkas DF (1991) Food Biotechnol 5:45–57CrossRefGoogle Scholar
  6. 6.
    Gross RA, Kalra B (2002) Science 297:803–807CrossRefGoogle Scholar
  7. 7.
    Allen TM, Cullis PR (2004) Science 303:1818–1822CrossRefGoogle Scholar
  8. 8.
    Gillies ER, Fréchet JM (2005) J Drug Discov Today 10:35–43CrossRefGoogle Scholar
  9. 9.
    Schmaljohann D (2006) Adv Drug Deliv Rev 58:1655–1670CrossRefGoogle Scholar
  10. 10.
    Kokufuta E (1992) Prog Polym Sci 17:647–697CrossRefGoogle Scholar
  11. 11.
    Dubin PL, Gao J, Mattison K (1994) Sep Purif Methods 23:1–16CrossRefGoogle Scholar
  12. 12.
    Ovenden C, Xiao H (2002) Colloids Surf A 197:225–234CrossRefGoogle Scholar
  13. 13.
    Svec F, Fréchet JM (1992) J Anal Chem 64:820–822CrossRefGoogle Scholar
  14. 14.
    Barrande M, Beurroies I, Denoyel R, Tatárová I, Gramblička M, Polakovič M, Joehnck M, Schulte M (2009) J Chromatogr A 1216:6906–6916CrossRefGoogle Scholar
  15. 15.
    Thömmes J, Etzel M (2007) Biotechnol Prog 23:42–45CrossRefGoogle Scholar
  16. 16.
    Low D, O’Leary R, Pujar NS (2007) J Chromatogr B 848:48–63CrossRefGoogle Scholar
  17. 17.
    Capito F, Skudas R, Stanislawski B, Kolmar H (2013) Colloid Polym Sci 1-11Google Scholar
  18. 18.
    Cooper CL, Goulding A, Kayitmazer AB, Ulrich S, Stoll S, Turksen S, Dubin PL (2006) Biomacromolecules 7:1025–1035CrossRefGoogle Scholar
  19. 19.
    Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Curr Opin Colloid Interface Sci 10:52–78CrossRefGoogle Scholar
  20. 20.
    Benmansour K, Medjahed K, Tennouga L, Mansri A (2003) Eur Polym J 39:1443–1449CrossRefGoogle Scholar
  21. 21.
    Mattison KW, Dubin PL, Brittain IJ (1998) J Phys Chem B 102:3830–3836CrossRefGoogle Scholar
  22. 22.
    Mattison KW, Brittain IJ, Dubin PL (1995) Biotechnol Prog 11:632–637CrossRefGoogle Scholar
  23. 23.
    Park J, Muhoberac BB, Dubin PL, Xia J (1992) Macromolecules 25:290–295CrossRefGoogle Scholar
  24. 24.
    Rawat K, Pathak J, Bohidar HB (2013) Phys Chem Chem Phys 15:12262–12273CrossRefGoogle Scholar
  25. 25.
    Hattori T, Bat-Alder S, Kato R, Bohidar HB, Dubin PL (2005) Anal Chem 342:229–236Google Scholar
  26. 26.
    Stoll S, Chodanowski P (2002) Macromolecules 35:9556–9562CrossRefGoogle Scholar
  27. 27.
    Xia J, Dubin PL, Kim Y, Muhoberac BB, Klimkowski VJ (1993) J Phys Chem 97:4528–4534CrossRefGoogle Scholar
  28. 28.
    Sato T, Mattison KW, Dubin PL, Kamachi M, Morishima Y (1998) Langmuir 14:5430–5437CrossRefGoogle Scholar
  29. 29.
    Yamaguchi K, Hachiya K, Moriyama Y, Takeda K (1996) J Coll Interf Sci 179:249–254CrossRefGoogle Scholar
  30. 30.
    Gummel J, Cousin F, Boué F (2008) Macromolecules 41:2898–2907CrossRefGoogle Scholar
  31. 31.
    Bohidar H, Dubin PL, Majhi PR, Tribet C, Jaeger W (2005) Biomacromolecules 6:1573–1585CrossRefGoogle Scholar
  32. 32.
    Borrega R, Tribet C, Audebert R (1999) Macromolecules 32:7798–7806CrossRefGoogle Scholar
  33. 33.
    Nguyen TT, Shklovskii BI (2001) J Chem Phys 114:5905–5916CrossRefGoogle Scholar
  34. 34.
    Ulrich S, Laguecir A, Stoll S (2005) Macromolecules 38:8939–8949CrossRefGoogle Scholar
  35. 35.
    Brynda M, Chodanowski P, Stoll S (2002) Colloid Polym Sci 280:789–797CrossRefGoogle Scholar
  36. 36.
    Schiessel H, Rudnick J, Bruinsma R, Gelbart WM (2000) Europhys Lett 51:237CrossRefGoogle Scholar
  37. 37.
    Akinchina A, Linse P (2002) Macromolecules 35:5183–5193CrossRefGoogle Scholar
  38. 38.
    Laguecir A, Stoll S, Kirton G, Dubin PL (2003) J Phys Chem B 107:8056–8065CrossRefGoogle Scholar
  39. 39.
    Chodanowski P, Stoll S (2001) J Chem Phys 115:4951–4960CrossRefGoogle Scholar
  40. 40.
    Chodanowski P, Stoll S (2001) Macromolecules 34:2320–2328CrossRefGoogle Scholar
  41. 41.
    Carlsson F, Malmsten M, Linse P (2003) J Am Chem Soc 125:3140–3149CrossRefGoogle Scholar
  42. 42.
    Skepö M, Linse P (2003) Macromolecules 36:508–519CrossRefGoogle Scholar
  43. 43.
    Jy S (1994) Glatz CE In Macromolecular Complexes in Chemistry and Biology; Dupin PL et al., Eds. Springer-Verlag, BerlinGoogle Scholar
  44. 44.
    Houska M, Brynda E, Bohata K (2004) J Coll Interf Sci 273:140–147CrossRefGoogle Scholar
  45. 45.
    Pawar N, Bohidar HB (2010) Phys Rev E 82:36107CrossRefGoogle Scholar
  46. 46.
    von Goeler F, Muthukumar M (1994) J Chem Phys 100:7796–7803CrossRefGoogle Scholar
  47. 47.
    Kong CY, Muthukumar M (1998) J Chem Phys 109:1522–1527CrossRefGoogle Scholar
  48. 48.
    Hattori T, Hallberg R, Dubin PL (2000) Langmuir 16:9738–9743CrossRefGoogle Scholar
  49. 49.
    Singh J, Dutta PK (2009) J Polym Res 16:231–238CrossRefGoogle Scholar
  50. 50.
    Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) Nucleic Acids Res 37:387–392CrossRefGoogle Scholar
  51. 51.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201CrossRefGoogle Scholar
  52. 52.
    Peitsch MC (1995) Bio/Technology 13:658–660CrossRefGoogle Scholar
  53. 53.
    Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525–537CrossRefGoogle Scholar
  54. 54.
    Bas DC, Rogers DM, Jensen JH (2008) Proteins Struct Funct Bioinforma 73:765–783CrossRefGoogle Scholar
  55. 55.
    Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) Nucleic Acids Res 35:522–525CrossRefGoogle Scholar
  56. 56.
    Li H, Robertson AD, Jensen JH (2005) Proteins Struct Funct Bioinforma 61:704–721CrossRefGoogle Scholar
  57. 57.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32:665–667CrossRefGoogle Scholar
  58. 58.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci U S A 98:10037–10041CrossRefGoogle Scholar
  59. 59.
    Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE (2012) J Struct Biol 179:269–278CrossRefGoogle Scholar
  60. 60.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  61. 61.
    Roth CM, Lenhoff AM (1995) Langmuir 11:3500–3509CrossRefGoogle Scholar
  62. 62.
    Kisler JM, Stevens GW O, Connor AJ (2001) Mat Phy Mech 4:89–93Google Scholar
  63. 63.
    Papadopoulos S, Jürgens KD, Gros G (2000) Biophys J 79:2084–2094CrossRefGoogle Scholar
  64. 64.
    Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Nature 445:749–753CrossRefGoogle Scholar
  65. 65.
    McDonald P, Victa C, Carter‐Franklin JN, Fahrner R (2009) Biotechnol Bioeng 102:1141–1151CrossRefGoogle Scholar
  66. 66.
    Izumi T, Hirata M, Kokufuta E, Cha HJ, Frank CW (1994) J Macromol Sci Pure Appl Chem 31:31–37Google Scholar
  67. 67.
    Adamczyk Z, Zembala M, Warszýnski P, Jachimska B (2004) Langmuir 20:10517–10525CrossRefGoogle Scholar
  68. 68.
    Donath E, Walther D, Shilov VN, Knippel E, Budde A, Lowack K, Helm CA, Möhwald H (1997) Langmuir 13:5294–5305CrossRefGoogle Scholar
  69. 69.
    Tricot M (1984) Macromolecules 17:1698–1704CrossRefGoogle Scholar
  70. 70.
    Le Bret M (1982) J Chem Phys 76:6243–6255CrossRefGoogle Scholar
  71. 71.
    Messina R, Holm C, Kremer K (2003) Langmuir 19:4473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Florian Capito
    • 1
    • 2
    Email author
  • Harald Kolmar
    • 1
  • Bernd Stanislawski
    • 2
  • Romas Skudas
    • 2
  1. 1.Clemens-Schöpf InstituteTechnical University of DarmstadtDarmstadtGermany
  2. 2.Merck KGaADarmstadtGermany

Personalised recommendations