Journal of Polymer Research

, 20:326 | Cite as

Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion

  • L. Arboleda
  • A. Ares
  • M. J. Abad
  • A. Ferreira
  • P. Costa
  • S. Lanceros-Mendez
Original Paper


The piezoresistive response of carbon nanotube (CNT)-polyamide composites processed by extrusion has been investigated as a function of CNT amount, polyamide 66 (PA66) / polyamide 6 (PA6) ratio, within the matrix and the masterbatch used to incorporate the CNT into the composite (PA66 masterbatch or PA6 masterbatch). The dispersion level of CNT in PA66/PA6 matrix was evaluated and related with the thermal, electrical and electromechanical properties. It is concluded that the inclusion of the CNT in the PA6 masterbatch helps to improve dispersion leading to larger values of the electrical conductivity in the composites prepared with larger PA66 content. On the other hand, the Gauge Factor (GF), which provides the sensitivity of a piezoresistive sensor, is larger for composites prepared from the PA66 masterbatch. The increase of PA66 content improving also the electromechanical response and GF reaches values up to 6. This fact demonstrates the suitability of the materials for sensor applications produced in an up-scaled production way.


Piezoresistive Gauge factor Carbon nanotubes composites Polyamides 



Authors acknowledge the financial support to MINECO-FEDER (research project IPT-420000-2010-004) and Xunta de Galicia-FEDER (Program of Consolidation and structuring competitive research units (CN2011/008).

L. Arboleda gratefully acknowledges financial support from Education Ministry with the program “Grants for students mobility stays for doctoral formation institutional strategies in Universities and consolidation of Doctorates programs with Excellence Mention”.

Furthermore, this work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and project PTDC/CTM-NAN/112574/2009. PC and AF also acknowledge FCT for the SFRH/BD/64267/2009 and SFRH/BD/69796/2010 grants, respectively. The authors also thank funding from Matepro –Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). Support from the COST Action MP1003, 2010 ‘European Scientific Network for Artificial Muscles’ and MP0902 “Composites of Inorganic Nanotubes and Polymers, COINAPO” is also acknowledged.


  1. 1.
    Luo S, Liu T (2013) Structure–property–processing relationships of single-wall carbon nanotube thin film piezoresistive sensors. Carbon 59:315–324CrossRefGoogle Scholar
  2. 2.
    György I (2008) Conductive polymers a new era in electrochemistry. Springer, Berlin HeidelbergGoogle Scholar
  3. 3.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945CrossRefGoogle Scholar
  4. 4.
    Zhang W, Dehghani-Sanij A, Blackburn RS (2007) Carbon based conductive polymer composites. J Mat Sci 42:3408–3418CrossRefGoogle Scholar
  5. 5.
    Lorenz H, Fritzsche J, Das A et al (2009) Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos Sci Technol 69:2135–2143CrossRefGoogle Scholar
  6. 6.
    Du J-H (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1:253–273CrossRefGoogle Scholar
  7. 7.
    Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41:1345–1367CrossRefGoogle Scholar
  8. 8.
    Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  9. 9.
    Castillo FY, Socher R, Krause B et al (2011) Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 52:3835–3845CrossRefGoogle Scholar
  10. 10.
    Socher R, Krause B, Müller MT et al (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53:495–504CrossRefGoogle Scholar
  11. 11.
    Kelar K, Jurkowski B (2007) Properties of anionic polymerized ε-caprolactam in the presence of carbon nanotubes. J Appl Polym Sci 104:3010–3017CrossRefGoogle Scholar
  12. 12.
    Saeed K, Park S (2007) Preparation of multiwalled carbon nanotube / nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci 106:3729–3735CrossRefGoogle Scholar
  13. 13.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by Shear Mixing. Macromol Mater Eng 287:395CrossRefGoogle Scholar
  14. 14.
    Hagerstrom JR, Greene SL (2000) Electrostatic dissipating composites containing Hyperion fibril nanotubes. Commercialization of nanostructured materials conference proceedings. Miami, Florida, USA, 6–7 April 2000Google Scholar
  15. 15.
    Ferguson DW, Bruant EWS, Fowler HC (1998) ESD thermoplastic product offers advantages for demanding electronic applications. ANTEC conference proceedings. Society of Plastics Engineers, Atlanta, pp 1219–1222Google Scholar
  16. 16.
    Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 44:5023–5030CrossRefGoogle Scholar
  17. 17.
    Mack C, Sathyanarayana S, Weiss P, et al. (2012) Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties. IOP Conf Ser: Model Simul Mater Sci Eng. doi: 10.1088/1757-899X/40/1/012020
  18. 18.
    Pegel S, Pötschke P, Petzold G et al (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49:974–984CrossRefGoogle Scholar
  19. 19.
    Villmow T, Pegel S, Pötschke P, Wagenknecht U (2008) Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos Sci Technol 68:777–789CrossRefGoogle Scholar
  20. 20.
    Paleo AJ, Sencadas V, Hattum FWJ Van (2013) Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polymer Eng Sci 1–12. doi: 10.1002/pen.23539
  21. 21.
    Cardoso P, Klosterman D, Covas JA et al (2012) Quantitative evaluation of the dispersion achievable using different preparation methods and DC electrical conductivity of vapor grown carbon nanofiber/epoxy composites. Polym Test 31:697–704CrossRefGoogle Scholar
  22. 22.
    Xiao H, Li H, Ou J (2010) Sensors and actuators A: physical modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain. Sensors Actuators: A Phys 160:87–93CrossRefGoogle Scholar
  23. 23.
    Theodosiou TC, Saravanos DA (2010) Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos Sci Technol 70:1312–1320CrossRefGoogle Scholar
  24. 24.
    Oliva-Avilés AI, Avilés F, Sosa V (2011) Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49:2989–2997CrossRefGoogle Scholar
  25. 25.
    Chiacchiarelli LM, Rallini M, Monti M et al (2013) The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos Sci Technol 80:73–79CrossRefGoogle Scholar
  26. 26.
    Wang ZF, Wang P, Ye XY, Jiang B (2009) Processing and modeling of multi-walled carbon nanotube / styrene-butadiene-styrene (SBS) composites for force sensing. Nanotechnology, 2009 9th IEEE Conference on Nanotechnology 8:756–757Google Scholar
  27. 27.
    Ferreira A, Cardoso P, Klosterman D, Covas JA, Van Hattum FWJ, Vaz F, Lanceros-Mendez S (2012) Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites. Smart Mater Struct. doi: 10.1088/0964-1726/21/7/075008 Google Scholar
  28. 28.
    Costa P, Silva J, Sencadas V et al (2012) Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites. J Mat Sci 48:1172–1179CrossRefGoogle Scholar
  29. 29.
    Slobodian P (2012) A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon 50:3446–3453CrossRefGoogle Scholar
  30. 30.
    Krause B, Pötschke P, Häußler L (2009) Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos Sci Technol 69:1505–1515CrossRefGoogle Scholar
  31. 31.
    Timmaraju MV, Gnanamoorthy R, Kannan K (2011) Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectorite nanocomposites. Compos Part B: Eng 42:466–472CrossRefGoogle Scholar
  32. 32.
    Timmaraju MV, Gnanamoorthy R, Kannan K (2011) Effect of initial imbibed moisture content on flexural fatigue behavior of polyamide 66/hectorite nanocomposites at laboratory condition. Mater Sci Eng, A 528:2960–2966CrossRefGoogle Scholar
  33. 33.
    Phang IY, Ma J, Shen L et al (2006) Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites. Polym Int 55:71–79CrossRefGoogle Scholar
  34. 34.
    Logakis E, Pandis C, Peoglos V et al (2009) Structure—property relationships in polyamide 6 / multi-walled carbon nanotubes nanocomposites. J Polym Sci B Polym Phys 47:764–774CrossRefGoogle Scholar
  35. 35.
    Bose S, Bhattacharyya AR, Kulkarni AR, Pötschke P (2009) Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Compos Sci Technol 69:365–372CrossRefGoogle Scholar
  36. 36.
    Bhattacharyya AR, Po P (2006) Mechanical properties and morphology of melt-mixed PA6 / SWNT composites: effect of reactive coupling. Macromol Symp 233:161–169CrossRefGoogle Scholar
  37. 37.
    Edith Turi A (1997) Thermal characterization of polymeric materials, vol 2. Polytechnic University Brooklyn, New YorkGoogle Scholar
  38. 38.
    Menczel JD, Jaffe M, Bessey WE (1997) Thermal characterization of polymeric material. Academic, San DiegoGoogle Scholar
  39. 39.
    Beeby S, Ensell G, Kraft M, White N (2004) MEMS mechanical sensors. Artech House, BostonGoogle Scholar
  40. 40.
    Zhu S, Chung DDL (2007) Analytical model of piezoresistivity for strain sensing in carbon fiber polymer–matrix structural composite under flexure. Carbon 45:1606–1613CrossRefGoogle Scholar
  41. 41.
    Tomova D, Kressler J, Radusch H (2000) Phase behaviour in ternary polyamide 6 / polyamide 66 / elastomer blends. Polymer 41(21):7773–7783CrossRefGoogle Scholar
  42. 42.
    Li Y, Liu H, Zhang Y, Yang G (2005) Melting behavior and nonisothermal crystallization kinetics of polyamide 6/polyamide 66 molecular composites viain situ polymerization. J Appl Polym Sci 98:2172–2177CrossRefGoogle Scholar
  43. 43.
    Caamaño C, Grady B, Resasco DE (2012) Influence of nanotube characteristics on electrical and thermal properties of MWCNT/polyamide 6,6 composites prepared by melt mixing. Carbon 50:3694–3707CrossRefGoogle Scholar
  44. 44.
    Hu N, Karube Y, Yan C et al (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRefGoogle Scholar
  45. 45.
    Del Castillo-castro T, Castillo-ortega MM, Herrera-franco PJ (2009) Composites: Part A Electrical, mechanical and piezo-resistive behavior of a polyaniline / poly ( n-butyl methacrylate ) composite. Compos Part A 40:1573–1579CrossRefGoogle Scholar
  46. 46.
    Ferreira A, Rocha JG, Ansón-Casaos A et al (2012) Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors Actuators A Phys 178:10–16CrossRefGoogle Scholar
  47. 47.
    Paleo AJ, Van Hattum FWJ, Rocha JG, Lanceros-Méndez S (2012) Piezoresistive polypropylene–carbon nanofiber composites as mechanical transducers. Microsyst Technol 18(5):591–597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Arboleda
    • 1
  • A. Ares
    • 1
  • M. J. Abad
    • 1
  • A. Ferreira
    • 2
  • P. Costa
    • 2
  • S. Lanceros-Mendez
    • 2
  1. 1.Grupo de PolímerosUniversity of A CoruñaFerrolSpain
  2. 2.Center/Department of PhysicsUniversity of MinhoBragaPortugal

Personalised recommendations