Advertisement

Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy

  • Éléonore J. Kibrik
  • Oliver Steinhof
  • Günter Scherr
  • Werner R. Thiel
  • Hans Hasse
Original Paper

Abstract

The existence of ether-bridged condensation products in urea-formaldehyde (UF) resins is still disputed in the literature as these products have never been isolated or fully characterized. Using 1H-15N gradient heteronuclear single quantum correlation (gHSQC) experiment, 1H-13C gHSQC experiment and 1H-13C gradient heteronuclear multiple bond correlation (gHMBC) experiment a, methylolurea hemiformal compound (urea compound with oligomeric chains \(-\rm{CH}_{2}\;{\rm O[CH}_{2}{\rm O]}{\mathrm {n}}{\rm H}\) and \(n\geq 1\)) and a symmetrical compound, most likely an ether-bridged condensation product, in a UF resin sample were characterized. The results were confirmed by 2D NMR 13C-13C gradient correlated spectroscopy (gCOSY) experiment using 13C labeled ureaformaldehyde samples. Spectroscopic chemical shifts of the proposed ether-bridged condensation product in 15N, 13C, 1H NMR spectroscopy were assigned. Furthermore, individual peak assignments are provided for the methylolurea hemiformal moiety.

Keywords

Urea Formaldehyde Resins Condensation Structure NMR 

Notes

Acknowledgments

The authors gratefully acknowledge Bernd Seemann and Dr. Peter Dvortsak from Bruker BioSpin GmbH for their advice and technical support. Measurements on the 400 MHz Advance III spectrometer were conducted at Bruker facilities in Rheinstetten, Germany. Financial support for this work by BASF SE, Ludwigshafen, is also gratefully acknowledged.

References

  1. 1.
    Dunky M, Niemz P (2002) Holzwerkstoffe und Leime. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Pizzi A (1994) Advanced wood adhesives technology. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Meyer B (1979) Urea-Formaldeyde Resins. Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  4. 4.
    Marutzky R, Roffael E, Ranta L (1979) Holz als Roh Werkst 37:303–307CrossRefGoogle Scholar
  5. 5.
    Marutzky R, Ranta L (1980) Holz als Roh Werkst 38:217–223CrossRefGoogle Scholar
  6. 6.
    Myers GE (1984) Forest Prod J 34:35–41Google Scholar
  7. 7.
    Ferg EE, Pizzi A, Levendis DC (1993) J Appl Polym Sci 50:907–915CrossRefGoogle Scholar
  8. 8.
    Park BD, Kim JW (2008) J Appl Polym Sci 108:2045–2051CrossRefGoogle Scholar
  9. 9.
    Park BD, Kang EC, Park JY (2006) J Appl Polym Sci 100:422–427CrossRefGoogle Scholar
  10. 10.
    Park BD, Kang EC, Park JY (2006) J Appl Polym Sci 101:1787–1792CrossRefGoogle Scholar
  11. 11.
    Park BD, Kang EC, Park JY (2008) J Appl Polym Sci 110:1573–1580CrossRefGoogle Scholar
  12. 12.
    Siimer K, Kaljuvee T, Christjanson P (2003) J Therm Anal Calorim 72:607–617CrossRefGoogle Scholar
  13. 13.
    Siimer K, Christjanson P, Kaljuvee T, Pehk T, Lasn I, Saks I (2008) J Therm Anal Calorim 92:19–27CrossRefGoogle Scholar
  14. 14.
    Siimer K, Christjanson P, Kaljuvee T, Pehk T, Saks I (2009) J Therm Anal Calorim 97:459–466CrossRefGoogle Scholar
  15. 15.
    Siimer K, Kaljuvee T, Pehk T, Lasn I (2010) J Therm Anal Calorim 99:755–762CrossRefGoogle Scholar
  16. 16.
    Ludlam PR (1973) Analyst 98:107–115CrossRefGoogle Scholar
  17. 17.
    Ludlam PR, King JG, Anderson RM (1986) Analyst 111:1265–1271CrossRefGoogle Scholar
  18. 18.
    Braun D, Bayersdorf F (1979) Angew Makromol Chem 83:21–36CrossRefGoogle Scholar
  19. 19.
    Kumlin K, Simonson R (1978) Angew Makromol Chem 68:175–184CrossRefGoogle Scholar
  20. 20.
    Kumlin K, Simonson R (1980) Angew Makromol Chem 86:143–156CrossRefGoogle Scholar
  21. 21.
    Becher HJ (1956) Chem Ber 8:1951–1971CrossRefGoogle Scholar
  22. 22.
    Jada S (1988) J Appl Polym Sci 35:1573–1592CrossRefGoogle Scholar
  23. 23.
    Carvalho LMH, Costa MRPFN, Costa CAV (2006) J Appl Polym Sci 102:5977–5987CrossRefGoogle Scholar
  24. 24.
    Rammon RM, Johns WE, Magnuson J, Dunker AK (1986) J Adhes 19:115–135CrossRefGoogle Scholar
  25. 25.
    Despres A, Pizzi A, Pasch H, Kandelbauer A (2007) J Appl Polym Sci 106:1106–1128CrossRefGoogle Scholar
  26. 26.
    Kveton R (1956) Collect Czechoslov Chem Commun 21:593–606Google Scholar
  27. 27.
    Kumlin K, Simonson R (1981) Angew Makromol Chem 93:27–42CrossRefGoogle Scholar
  28. 28.
    Steinhof O (2010) PhD Thesis. Universität Stuttgart, Cuivilier Verlag GöttingenGoogle Scholar
  29. 29.
    Goldschmidt C (1896) Ber Dtsch Chem Ges 29:2438–2439CrossRefGoogle Scholar
  30. 30.
    Goldschmidt C (1897) Chem-Ztg 46:460Google Scholar
  31. 31.
    De Jong JI, De Jonge J (1953) Recl Trav Chim Pays-Bas 72:139–156CrossRefGoogle Scholar
  32. 32.
    Staudinger H, Wagner K (1954) Makromol Chem 12:168–235CrossRefGoogle Scholar
  33. 33.
    Zigeuner G, Pitter R (1955) Monatsh Chem 86:57–68CrossRefGoogle Scholar
  34. 34.
    Chuang I, Maciel G (1992) Macromolecules 25:3204–3226CrossRefGoogle Scholar
  35. 35.
    Christjanson P, Siimer K, Pehk T, Lasn I (2002) Holz Roh-Werkst 60:379–384CrossRefGoogle Scholar
  36. 36.
    Christjanson P, Pehk T, Siimer K (2006) Proc Est Acad Sci Chem 55:212–225Google Scholar
  37. 37.
    Soulard C, Kamoun C, Pizzi A (1999) J Appl Polym Sci 72:277–289CrossRefGoogle Scholar
  38. 38.
    Mejdell T, Schjonsby HK (2004) Macromol Symp 206:241–254CrossRefGoogle Scholar
  39. 39.
    Horn V, Benndorf G, Roedler KP (1978) Plaste Kautsch 25:570–575Google Scholar
  40. 40.
    Zigeuner G, Knierzinger W, Voglar K, Wiesenberger E, Sobotka M (1951) Monatsh Chem 82:847–855CrossRefGoogle Scholar
  41. 41.
    Zigeuner G, Voglar K, Pitter R (1954) Monatsh Chem 85:1196–1207CrossRefGoogle Scholar
  42. 42.
    Chiavarini M, Del Fanti N, Bigatto R (1975) Angew Makromol Chem 46:151–162CrossRefGoogle Scholar
  43. 43.
    Kambanis SM, Vasishth RC (1971) J Appl Polym Sci 15:1911–1919CrossRefGoogle Scholar
  44. 44.
    De Breet AJJ, Dankelman W, Huysmans WGB, De Wit J (1977) Angew Makromol Chem 62:7–31CrossRefGoogle Scholar
  45. 45.
    Ebdon J, Heaton PE (1977) Polymer 18:971–974CrossRefGoogle Scholar
  46. 46.
    Tomita B, Hatono S (1978) J Polym Sci Polym Chem Ed 16:2509–2525CrossRefGoogle Scholar
  47. 47.
    Taylor R, Pragnell R, McLaren J, Snape C (1982) Talanta 29:489–494CrossRefGoogle Scholar
  48. 48.
    Siimer K, Pehk T, Christjanson P (1999) Macromol Symp 148:149–156CrossRefGoogle Scholar
  49. 49.
    Kim MG (1999) J Polym Sci Polym Chem 377:995–1007CrossRefGoogle Scholar
  50. 50.
    Tohmura S, Hse C, Higuchi M (2000) J Wood Sci 46:303–309CrossRefGoogle Scholar
  51. 51.
    Park BD, Kim YS, Singh AP, Lim KP (2003) J Appl Polym Sci 88:2677–2687CrossRefGoogle Scholar
  52. 52.
    Ebdon JR, Heaton PE, Huckerby TN, O’Rourke WTS, Parkin J (1984) Polymer 25:821–825CrossRefGoogle Scholar
  53. 53.
    Chuang I, Maciel GE (1994) Polymer 35:1621–1628CrossRefGoogle Scholar
  54. 54.
    Angelatos AS, Burgar MI, Dunlo N, Separovic F (2004) J Appl Polym Sci 91:3504–3512CrossRefGoogle Scholar
  55. 55.
    Philbrook A, Blake CJ, Dunlop N, Easton CJ, Keniry MA, Simpson JS (2005) Polymer 46:2153–2156CrossRefGoogle Scholar
  56. 56.
    Ebdon JR, Hunt BJ, O’Rourke WTS (1987) Brit Polym J 19:197–203CrossRefGoogle Scholar
  57. 57.
    Kibrik EJ, Steinhof O, Scherr G, Thiel WR, Hasse H (2012) J Appl Polym Sci. doi: 10.1002/app.38630 Google Scholar
  58. 58.
    Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Pure Appl Chem 80:59–84CrossRefGoogle Scholar
  59. 59.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) J Biomol NMR 6:135–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Éléonore J. Kibrik
    • 1
  • Oliver Steinhof
    • 3
  • Günter Scherr
    • 4
  • Werner R. Thiel
    • 2
  • Hans Hasse
    • 1
  1. 1.Laboratory of Engineering ThermodynamicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of ChemistryUniversity of KaiserslauternKaiserslauternGermany
  3. 3.Laboratory of Thermodynamics and Thermal Process EngineeringUniversity of StuttgartStuttgartGermany
  4. 4.BASF SE, GMU/CLudwigshafenGermany

Personalised recommendations