Journal of Polymer Research

, 19:9979 | Cite as

Synthesis, characterization and drug release properties of thermosensitive poly(N-isopropylacrylamide) microgels

  • Stojanka Petrusic
  • Petar Jovancic
  • Maryline Lewandowski
  • Stéphane Giraud
  • Branko Bugarski
  • Jasna Djonlagic
  • Vladan Koncar
Original Paper


This study was aimed at optimizing the structure and properties of poly(N-isopropylacrylamide) (PNIPAAm) microgels prepared by inverse suspension polymerization. The influence of the oil-to-water phase ratio, the concentration of emulsifier, and the monomer-to-crosslinker molar ratio on selected properties of the PNIPAAm microgels was examined. Regularity of the microgels shape was estimated by optical microscopy. Laser diffraction technique was used to determine the microgels mean size and size distribution. Equilibrium swelling ratio was studied gravimetrically. Morphology of microgels was followed by SEM. Volume phase transition temperature of PNIPAAm microgels was determined by differential scanning calorimetry. The results obtained imply that the mean diameter of microgels and their equilibrium swelling ratio highly depend on the concentration of emulsifier in oil phase and the crosslinking degree of PNIPAAm. The crosslinking degree of PNIPAAm has no substantial effect on the volume phase transition temperature that is demonstrated to be around 33 °C even after complete heating-cooling-heating cycle. In addition, it was confirmed that the swollen microgels have a porous, honeycomb-like structure. Release profiles of procaine hydrochloride from the PNIPAAm microgels confirmed their potential to be considered as efficient matrices in drug release applications.


Poly(N-isopropylacrylamide) Thermosensitive microgels Inverse suspension polymerization Volume phase transition Controlled drug release 



The financial support for this research work has been provided by the project ARCUS 2006 – Nord-Pas-de-Calais/Bulgarie – Roumanie – Serbie, granted by the French Ministry of Foreign Affairs and the Region Nord-Pas-De-Calais. The research is also supported in part by the project number III46010, granted by the Ministry of Education and Science of Republic of Serbia. The authors would like to thank Dr. Smilja Markovic from the Institute of Technical Sciences of the Serbian Academy of Sciences and Arts from Belgrade for her valuable help in laser diffraction analysis.


  1. 1.
    Peppas NA (1996) In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, San Diego, p 100Google Scholar
  2. 2.
    Okay O (2009) In: Gerlach G, Arndt KF (eds) Hydrogels sensors and actuators. Springer, Berlin, p 2Google Scholar
  3. 3.
    Otake K, Inomata H, Konno S, Saito S (1990) Macromolecules 23:283–289CrossRefGoogle Scholar
  4. 4.
    Katayama S, Ohata A (1985) Macromolecules 18:2781–2782CrossRefGoogle Scholar
  5. 5.
    Wang KL, Burban JH, Cussler EL (1993) In: Dušek K (ed) Responsive gels: volume transitions II. Springer, Berlin, p 67CrossRefGoogle Scholar
  6. 6.
    Yoshida R, Okano T (2010) In: Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, p 19CrossRefGoogle Scholar
  7. 7.
    Lin CC, Metters AT (2006) Adv Drug Deliv Rev 58:1379–1408CrossRefGoogle Scholar
  8. 8.
    Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE (2002) Drug Dev Ind Pharm 28:957–974CrossRefGoogle Scholar
  9. 9.
    Ngadaonye JI, Cloonan MO, Geever LM, Higginbotham CL (2011) J Polym Res 18:2307–2324CrossRefGoogle Scholar
  10. 10.
    Zhang J, Pelton R, Yulin Deng Y (1995) Langmuir 11:2301–2302CrossRefGoogle Scholar
  11. 11.
    Chanda M, Roy SK (2007) Plastics technology handbook. CRC Press, Boca Raton, p 117Google Scholar
  12. 12.
    Petrusic S, Lewandowski M, Giraud S, Jovancic P, Bugarski B, Ostojic S, Koncar V (2012) J Appl Polym Sci 124:890–903CrossRefGoogle Scholar
  13. 13.
    Annaka M, Matsuura T, Kasai M, Nakahira T, Hara Y, Okano T (2003) Biomacromolecules 4:395–403CrossRefGoogle Scholar
  14. 14.
    Elbert DL (2011) Acta Biomater 7:31–56CrossRefGoogle Scholar
  15. 15.
    Naeem H, Farooqi ZH, Shah LA, Siddiq M (2012) J Polym Res 19:9950CrossRefGoogle Scholar
  16. 16.
    Park S, Hwang S, Lee J (2011) Chem Eng J 169:348–357CrossRefGoogle Scholar
  17. 17.
    Liu W, Wu WD, Selomulya C, Chen XD (2011) Int J Chem Eng 2011:7Google Scholar
  18. 18.
    Oudshoorn MHM, Penterman R, Rissmann R, Bouwstra JA, Broer DJ, Hennink WE (2008) J Control Release 132:e19–e36CrossRefGoogle Scholar
  19. 19.
    Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G (1994) AICHE J 40:1026–1031CrossRefGoogle Scholar
  20. 20.
    Bugarski BM, Obradovic B, Nedovic VA, Goosen MFA (2006) In: Spasic AM, Hsu JP (eds) Finely dispersed particles: micro-, nano-, and atto-engineering. CRC Press, Boca Raton, p 869Google Scholar
  21. 21.
    Omidian H, Zohuriaan-Mehr MJ, Bouhendi H (2003) Eur Polym J 39:1013–1018CrossRefGoogle Scholar
  22. 22.
    Babič M, Horák D (2007) Macromol React Eng 1:86–94CrossRefGoogle Scholar
  23. 23.
    Park TG, Hoffman AS (1994) Biotechnol Prog 10:82–86CrossRefGoogle Scholar
  24. 24.
    Grabstain V, Bianco-Peled H (2003) Biotechnol Prog 19:1728–1733CrossRefGoogle Scholar
  25. 25.
    Kayaman N, Kazan D, Erarslan A, Okay O, Baysal BM (1998) J Appl Polym Sci 67:805–814CrossRefGoogle Scholar
  26. 26.
    Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N (2011) Fiber Polym 12:399–404CrossRefGoogle Scholar
  27. 27.
    Chew NYK, Chan HK (2002) J Pharm Pharm Sci 5:162–168Google Scholar
  28. 28.
    Chu LY, Park SH, Yamaguchi T, Nakao SI (2002) Langmuir 18:1856–1864CrossRefGoogle Scholar
  29. 29.
    Peppas NA (1985) Pharm Acta Helv 60:110–111Google Scholar
  30. 30.
    Vivaldo-Lima E, Wood PE, Hamielec AE, Penlidis A (1997) Ind Eng Chem Res 36:939–965CrossRefGoogle Scholar
  31. 31.
    Mayoux C, Dandurand J, Ricard A, Lacabanne C (2000) J Appl Polym Sci 77:2621–2630CrossRefGoogle Scholar
  32. 32.
    Guenther M, Gerlach G (2009) In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Springer, Berlin, p 171Google Scholar
  33. 33.
    Schild HG (1992) Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  34. 34.
    Dowding PJ, Vincent B, Williams E (2000) J Colloid Interface Sci 221:268–272CrossRefGoogle Scholar
  35. 35.
    Özeroglu C, Birdal A (2009) Express Polym Lett 3:168–176CrossRefGoogle Scholar
  36. 36.
    Malmsten M, Bysell H, Hansson P (2010) Curr Opin Colloid Interface Sci 15:435–444CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Zhu W, Ding J (2005) J Biomed Mater Res A 75:342–349Google Scholar
  38. 38.
    Suárez IJ, Fernández-Nieves A, Márquez M (2006) J Phys Chem B 110:25729–25733CrossRefGoogle Scholar
  39. 39.
    Topuz F, Okay O (2009) React Funct Polym 69:273–280CrossRefGoogle Scholar
  40. 40.
    Cheng CJ, Chu LY, Zhang J, Wang HD, Wei G (2008) Colloid Polym Sci 286:571–577CrossRefGoogle Scholar
  41. 41.
    Park AS, Hoffman TG (1994) Biotechnol Prog 10:82–86CrossRefGoogle Scholar
  42. 42.
    Taşdelen B, Kayaman-Apohan N, Msɪrlɪ Z, Güven O, Baysal BM (2005) J Appl Polym Sci 97:1115–1124CrossRefGoogle Scholar
  43. 43.
    Hsu YY, Gresser JD, Stewart RR, Trantolo DJ, Lyons CM, Simons GA, Gangadharam PRJ, Wise DL (1996) J Pharm Sci 85:706–713CrossRefGoogle Scholar
  44. 44.
    Siepmann J, Peppas NA (2001) Adv Drug Deliv Rev 48:139–157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stojanka Petrusic
    • 1
    • 2
    • 3
  • Petar Jovancic
    • 1
  • Maryline Lewandowski
    • 2
    • 3
  • Stéphane Giraud
    • 2
    • 3
  • Branko Bugarski
    • 1
  • Jasna Djonlagic
    • 1
  • Vladan Koncar
    • 2
    • 3
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Université Lille Nord de FranceLilleFrance
  3. 3.Ecole Nationale Supérieure des Arts et Industries Textile, GEMTEXRoubaixFrance

Personalised recommendations