Advertisement

Journal of Polymer Research

, 19:9963 | Cite as

Synthesis and characterization of bead-like particles based on chitosan and vinyl polymers

  • N. Preda
  • M. Enculescu
Original Paper

Abstract

Styrene, methyl methacrylate and glycidyl methacrylate vinyl monomers were grafted onto chitosan by surfactant-free emulsion copolymerization using potassium persulfate as initiator. The grafted compounds were characterized by X-ray diffraction, FTIR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential measurements. X-ray diffraction showed changes in the crystallinity pattern of chitosan after the copolymerization reaction. Evidence of grafting was confirmed by FTIR spectroscopy. From zeta potential measurements it is found that the surfaces of graft copolymers latex particles have positive charges resulting from the cationic chitosan molecules. The morphology evaluated by SEM, TEM and AFM proves that in the absence of chitosan, latexes of vinyl homopolymers contain quasi-monodispersed spheres with average diameter of about 400 nm or 250 nm while the graft copolymers latexes are formed by clustered irregular beads with average diameter around 100 nm.

Keywords

Chitosan Surfactant-free emulsion copolymerization Graft vinyl copolymers FTIR spectroscopy Scanning electron microscopy 

Notes

Acknowledgments

Authors thank to Dr. Victor Fruth for zeta potential measurements and to Raluca Negrea for TEM investigations. This work was supported by CNCSIS-UEFISCSU, Project number PNII-RU code 59/2010 (Contract no. 18/28.07.2010) and by the Romanian Education and Research Ministry through the Nucleu Project No. 45N.

References

  1. 1.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRefGoogle Scholar
  2. 2.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccarides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662CrossRefGoogle Scholar
  3. 3.
    Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414CrossRefGoogle Scholar
  4. 4.
    Yi H, Bentley WE, Ghodssi R, Rubloff GW, Culver JN (2005) Biofabrication with chitosan. Biomacromolecules 6:2881–2894CrossRefGoogle Scholar
  5. 5.
    Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  6. 6.
    Jiang X, Cai K, Zhang J, Shen Y, Wang S, Tian X (2011) Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization. J Hazard Mater 185:1482–1488CrossRefGoogle Scholar
  7. 7.
    Singh V, Sharma AK, Tripathi DN, Sanghi R (2009) Poly(methylmethacrylate) grafted chitosan: an efficient absorbent for anionic azo dyes. J Hazard Mater 161:955–966CrossRefGoogle Scholar
  8. 8.
    Deemak P, Wanichwecharungruang S, Nonthabenjawan R, Jornjangjun C (2011) Controlling the morphology of self-assemble chitosan through derivatization. J Polym Res 18:419–424CrossRefGoogle Scholar
  9. 9.
    Wu Y, Liu C, Zhao X, Xiang J (2008) A new biodegradable polymer: PEGyalted chitosan-g-PEI possessing a hydroxyl group at the PEG end. J Polym Res 15:181–185CrossRefGoogle Scholar
  10. 10.
    Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-present status and applications. Carbohydr Polym 62:142–158CrossRefGoogle Scholar
  11. 11.
    Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:29767–29814CrossRefGoogle Scholar
  12. 12.
    Prashanth KVH, Tharanathan RN (2003) Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydr Polym 54:343–351CrossRefGoogle Scholar
  13. 13.
    Jenkins DW, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273CrossRefGoogle Scholar
  14. 14.
    Akgun S, Ekici G, Mutlu N, Besirli N, Hazer B (2007) Synthesis and properties of chitosan-modified poly(vinyl butyrate). J Polym Res 14:215–221CrossRefGoogle Scholar
  15. 15.
    Don TM, Chen YR, Chiu WY (2002) The synthesis of chitin-g-poly (vinyl acetate) copolymers with a redox initiator. J Polym Res 9:257–263CrossRefGoogle Scholar
  16. 16.
    Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly(vinyl acetate). J Appl Polym Sci 86:3057–3063CrossRefGoogle Scholar
  17. 17.
    Radhakumary C, Divya G, Nair PD, Mathew S, Nair CPR (2003) Graft copolymerization of 2-hydroxy ethyl methacrylate onto chitosan with cerium (IV) ion. I. Synthesis and characterization. J Macromol Sci A 40:715–730Google Scholar
  18. 18.
    Mun GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68:389–395CrossRefGoogle Scholar
  19. 19.
    Joshi JM, Sinha VK (2006) Synthesis and characterization of carboxymethyl chitosan grafted methacrylic acid initiated by ceric ammonium nitrate. J Polym Res 13:387–395CrossRefGoogle Scholar
  20. 20.
    Chuang CY, Don TM, Chiu WY (2008) Synthesis and properties of chitosan-modified poly(acrylic acid). J Appl Polym Sci 109:3382–3389CrossRefGoogle Scholar
  21. 21.
    Lv P, Bin Y, Li Y, Chen R, Wang X, Zhao B (2009) Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer 50:5675–5680CrossRefGoogle Scholar
  22. 22.
    Duan W, Chen C, Jiang L, Li GH (2008) Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester]. Carbohydr Polym 73:582–586CrossRefGoogle Scholar
  23. 23.
    Russel WB, Savile SA, Schowalter WR (1989) Colloidal dispersions, in Cambridge monographs on mechanics. Cambridge University Press, New YorkGoogle Scholar
  24. 24.
    Preda N, Rusen E, Musuc A, Enculescu M, Matei E, Marculescu B, Fruth V, Enculescu I (2010) Synthesis and properties of poly (methyl methacrylate-2 acrylamido-2 methylpropane sulfonic acid)/PbS hybrid composite. Mater Res Bull 45:1008–1012CrossRefGoogle Scholar
  25. 25.
    Caruso F (2004) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley-VCH Verlag GmbH &Co. KGaA, WeinheimGoogle Scholar
  26. 26.
    Preda N, Matei E, Enculescu M, Rusen E, Mocanu A, Marculescu B, Enculescu I (2011) Effect of aqueous comonomer solubility on the surfactant-free emulsion copolymerization of methyl methacrylate. J Polym Res 18:25–30CrossRefGoogle Scholar
  27. 27.
    Preda N, Enculescu M, Matei E, Enculescu I (2010) The influence of synthesis parameters on size and morphology of poly(styrene-hydroxyethyl methacrylate) colloids. Dig J Nanomater Bios 5:1055–1065Google Scholar
  28. 28.
    Hsu SC, Don TM, Chiu WY (2002) Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stab 75:73–83CrossRefGoogle Scholar
  29. 29.
    Davidenko N, Carrodeguas RG, Peniche C, Solis Y, Cameron RE (2010) Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater 6:466–476CrossRefGoogle Scholar
  30. 30.
    Jiang H, Liang J, Grant JT, Su W, Bunning TJ, Cooper TM, Adams W (1997) Characterization of chitosan and rare-earth-metal-ion doped chitosan films. Macromol Chem Phys 198:1561–1578CrossRefGoogle Scholar
  31. 31.
    Socrates G (1980) Infrared characteristic group frequencies, 3rd edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Luo Z, Zou C, Syed S, Syarbaini LA, Chen G (2012) Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals. Colloid Polym Sci 290:141–150CrossRefGoogle Scholar
  33. 33.
    Liu C, Ge C, Wang A, Yin H, Ren M, Zhang Y, Yu L, Jiang T (2011) Synthesis of porous hollow silica spheres using functionalized polystyrene latex spheres as templates. Korean J Chem Eng 28:1458–1463CrossRefGoogle Scholar
  34. 34.
    Min K, Hu J, Wang C, Elaissari A (2002) Surface modification of polystyrene latex particles via atom transfer radical polymerization. J Polym Sci A Polym Chem 40:892–900CrossRefGoogle Scholar
  35. 35.
    Ding X, Wang Z, Han D, Zhang Y, Shen Y, Wang Z, Niu L (2006) An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites. Nanotechnology 17:4796–4801CrossRefGoogle Scholar
  36. 36.
    Sivakumar M, Rao PK (2000) Synthesis and characterization of poly(methyl methacrylate) functional microspheres. React Funct Polym 46:29–37CrossRefGoogle Scholar
  37. 37.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47:254–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsBucharestRomania

Personalised recommendations