Advertisement

Optical properties of solution grown PVDF-ZnO nanocomposite thin films

  • Ajay Pal Indolia
  • M. S. GaurEmail author
Original Paper

Abstract

The optical properties have been investigated using EDX, UV–Visible spectroscopy and Raman spectroscopy. The nanocomposite formation was confirmed using EDX as well as UV-Visible absorption spectroscopy. Raman study confirms the β phase of PVDF. The UV–Vis spectroscopy accounts for a significant continuous decline in optical band gap and optical activation energy, while increase in refractive index with ZnO nanoparticles incorporation. The results imply that the effectiveness in shielding of UV radiation is due to absorption capacity of ZnO nanoparticles incorporated in PVDF. The increase of absorption in the UV-region of the spectrum is due to the excitations of donor level electrons to the conduction band at these energies. This decrease of band gap may be attributed by presence of unstructured bulk defects. The optical properties of nanocomposite thin films were shown to depend on ZnO content and possessed the most optimal optical properties.

Keywords

Thin films Raman spectroscopy Optical properties Nanocomposites Polymers 

Notes

Acknowledgements

The authors are thankful to Defence Research & Development Organization (Vide letter no. ERIP/ER/0804419/M/01/1113) New Delhi (India) for providing financial support. One of the authors (Ajay Pal Indolia) acknowledges DRDO for a senior research fellowship. The authors are also thankful to Director, AIRF-JNU New Delhi (India) for providing Raman and EDX characterization facilities.

References

  1. 1.
    Groh W, Zimmermann A (1991) What is the lowest refractive index of an organic polymer. Macromolecules 24:6660–6663CrossRefGoogle Scholar
  2. 2.
    Nanda KK, Sarangi SN, Mohanty S, Sahu SN (1998) Optical properties of CdS nanocrystalline films prepared by a precipitation technique. Thin Solid Films 322:21–27CrossRefGoogle Scholar
  3. 3.
    Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112CrossRefGoogle Scholar
  4. 4.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2000) Irradiation graft polymerization on nano-inorganic particles: an effective means to design polymer based nanocomposites. J Mater Sci Lett 19:1159CrossRefGoogle Scholar
  5. 5.
    Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813CrossRefGoogle Scholar
  6. 6.
    Haridas M, Srivastava S, Basu JK (2008) Optical properties of polymer nanocomposites. Bull Mater Sci 31:213–217CrossRefGoogle Scholar
  7. 7.
    Sui XM, Shao CL, Liu YC (2005) White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl Phys Lett 87:113–115CrossRefGoogle Scholar
  8. 8.
    Xiong M, Gu G, You B, Wu L (2003) Preparation and characterization of poly (styrene butylacrylate) latex/nano-ZnO nanocomposites. J Appl Polym Sci 90:1923–1931CrossRefGoogle Scholar
  9. 9.
    Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394:184–192CrossRefGoogle Scholar
  10. 10.
    Mitra P, Chatterjee AP, Maiti HS (1998) ZnO thin film sensor. Mater Lett 35:33–38CrossRefGoogle Scholar
  11. 11.
    Dimova-Malinovska D (1999) Application of stain-etched porous silicon in light emitting diodes and solar cells. J Lumin 80:207–211CrossRefGoogle Scholar
  12. 12.
    Kumar AP, Depan D, Tomer NS, Singh RP (2009) Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog Polym Sci 34:479–515CrossRefGoogle Scholar
  13. 13.
    Lee J, Bhattacharyya D, Easteal AJ, Metson JB (2008) Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Curr Appl Phys 8:42–47CrossRefGoogle Scholar
  14. 14.
    Abdullah TMM, Okuyama K (2003) Generating blue and red luminescence from ZnO/Poly (ethylene glycol) nanocomposites prepared using an in-situ method. Adv Funct Mater 11:800–804CrossRefGoogle Scholar
  15. 15.
    Gaur MS, Indolia AP (2010) Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim 103:977–985CrossRefGoogle Scholar
  16. 16.
    Srivastava AK, Virk HS (2000) 50 MeV lithium ion beam irradiation effects in poly vinylidene fluoride (PVDF) polymer. Bull Mater Sci 23:533–538CrossRefGoogle Scholar
  17. 17.
    Elilarassi R, Chandrasekaran G (2011) Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. J Mater Sci Mater Electron 22:751–756CrossRefGoogle Scholar
  18. 18.
    Islam MR, Podder J (2009) Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst Res Technol 44:286–292CrossRefGoogle Scholar
  19. 19.
    Mott NF, Davis EA (1979) Electronic Processes in Non-Crystalline Materials, 2nd edn. Clareddon, OxfordGoogle Scholar
  20. 20.
    Mathai CJ, Saravanan S, Anantharaman MR, Venkatachalam S, Jayalekshmi S (2002) Effect of iodine doping on the bandgap of plasma polymerized aniline thin films. J Phys D Appl Phys 35:2206–2210CrossRefGoogle Scholar
  21. 21.
    Rathore BS, Gaur MS, Singh F, Singh KS (2012) Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat Eff Defect Solid 167:131–140CrossRefGoogle Scholar
  22. 22.
    Majeed Khan MA, Zulfequar M, Husain M (2003) Optical investigation of a-Se100-xBix alloys. Opt Mater 22:21–29CrossRefGoogle Scholar
  23. 23.
    Susilawati DA (2009) Dose response and optical properties of Dyed Poly Vinyl Alcohol-Trichloroacetic Acid Polymeric Blends Irradiated with Gamma-Rays. American J Appl Sci 6:2071–2077CrossRefGoogle Scholar
  24. 24.
    Radwan RM (2007) Electron induced modification in optical properties of polypropylene. J Phys D Appl Phys 40:374–379CrossRefGoogle Scholar
  25. 25.
    Cody GD, Tiedje T, Abeles B, Brooks B, Goldstein Y (1981) Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys Rev Lett 47:1480–1483CrossRefGoogle Scholar
  26. 26.
    Abay B, Guder HS, Yogurtchu YK (1999) Urbach–Martienssen’s tails in layered semiconductor GaSe. Solid State Commun 112:489–494CrossRefGoogle Scholar
  27. 27.
    Long DA (1977) Raman spectroscopy. McGraw Hill, New YorkGoogle Scholar
  28. 28.
    Boerio FJ, Koenig JL (1969) Raman scattering in nonplanar poly (vinylidene fluoride). J Polym Sci Part A2 Polym Phys 7:1489–1494CrossRefGoogle Scholar
  29. 29.
    Kuptsov AH, Zhizhin GN (1998) Handbook of Fourier Transform Raman and Infrared Spectra of polymers. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PhysicsHindustan College of Science and TechnologyMathuraIndia

Personalised recommendations