Journal of Polymer Research

, 19:36 | Cite as

Tri-component copolymer rods as an implantable reservoir drug delivery system for constant and controllable drug release rate

  • Tararat Chanlen
  • Suradej Hongeng
  • Norased NasongklaEmail author
Original Paper


Copolymers of (D,L-lactide-random-ε-caprolactone)-block-poly(ethylene glycol)-block-(D,L-lactide-random-ε-caprolactone) (PLECs) were synthesized with varied D,L-lactide (LA) content and different molecular weights (20 and 50 kDa). Polymer ratios, particularly the content of LA, had significant effect on the release of trypan blue. A lower trypan blue release rate was observed from monolithic rods composed of PLECs with higher CL/LA ratio. High LA content in polymer rod led to increase of the hydrophilicity of the polymer rod and the decrease of CL content resulted in the increase of the hydrophilicity of PLECs and hydrolysis rate. Spin-coating technique was employed to coat PCL-b-PEG-b-PCL membrane on PLEC rod with controlled thickness. Results showed that membrane encased rods can produce different release pattern including delayed release, zero-ordered release and burst release depending on the types of inner rod and membrane. Results for this study indicated that PLEC rods could provide the zero-order release profile of highly water-soluble molecules. Moreover, the longer lag phase was observed at higher thickness. These results suggest that these polymer rods were potential drug delivery systems that can provide controlled drug release profiles.


Drug delivery systems Polymer rods Biodegradable polymers Controllable drug release rate Reservoir drug delivery system 



This work was supported by Thailand Research Fund (TRF) and Commission of Higher Education (CHE) for Norased Nasongkla. Financial support for Tararat Chanlen from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education is gratefully acknowledged. We are thankful to Pat Akarajirathun for technical help.


  1. 1.
    Gliadel wafers for treatment of brain tumors (1998) Med Lett Drugs Ther 40(1035):92Google Scholar
  2. 2.
    Qian F, Nasongkla N, Gao J (2002) Membrane-encased polymer millirods for sustained release of 5-fluorouracil. J Biomed Mater Res 61(2):203–211CrossRefGoogle Scholar
  3. 3.
    Qian F, Szymanski A, Gao J (2001) Fabrication and characterization of controlled release poly(D, L-lactide-co-glycolide) millirods. J Biomed Mater Res 55(4):512–522CrossRefGoogle Scholar
  4. 4.
    Weinberg BD, Ai H, Blanco E, Anderson JM, Gao J (2007) Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods. J Biomed Mater Res Part A 81A(1):161–170CrossRefGoogle Scholar
  5. 5.
    Khamlao W, Hongeng S, Sakdapipanich J, Nasongkla N (2012) Preparation of self-solidifying polymeric depots from PLEC-PEG-PLEC triblock copolymers as an injectable drug delivery system. J Polym Res 19(3):1–12CrossRefGoogle Scholar
  6. 6.
    Manaspon C, Hongeng S, Boongird A, Nasongkla N (2012) Preparation and in vitro characterization of SN-38-Loaded, self-forming polymeric depots as an injectable drug delivery system. J Pharm Sci 101(10):3708–3717CrossRefGoogle Scholar
  7. 7.
    Boongird A, Nasongkla N, Hongeng S, Sukdawong N, Sa-Nguanruang W, Larbcharoensub N (2011) Biocompatibility study of glycofurol in rat brains. Exp Biol Med (Maywood, NJ) 236(1):77–83CrossRefGoogle Scholar
  8. 8.
    Baker RW (1987) In: Controlled release of biologically active agents. Wiley, New YorkGoogle Scholar
  9. 9.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430CrossRefGoogle Scholar
  10. 10.
    Wang Z, Wang S, Guidoin R, Marois Y, Zhang Z (2006) In vitro homogeneous and heterogeneous degradation of poly(ϵ-caprolactone/polyethylene glycol/L-lactide): the absence of autocatalysis and the role of enzymes. J Biomed Mater Res Part A 79A(1):6–15CrossRefGoogle Scholar
  11. 11.
    Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang C (2002) Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. J Pharm Sci 91(6):1463–1473CrossRefGoogle Scholar
  12. 12.
    Shogren R (1997) Water vapor permeability of biodegradable polymers. J Polym Environ 5(2):91–95CrossRefGoogle Scholar
  13. 13.
    Pearce EM, Schaefgen JR (1977) Contemporary topics in polymer science, vol 2. Plenum, New YorkCrossRefGoogle Scholar
  14. 14.
    Meidong L, Jianzhong B, Shenguo W (1999) Synthesis and characterization of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymers. J Biomater Sci Polym Ed 10(4):501–512CrossRefGoogle Scholar
  15. 15.
    Nasongkla N, Boongird A, Hongeng S, Manaspon C, Larbcharoensub N (2012) Preparation and biocompatibility study of in situ forming polymer implants in rat brains. J Mater Sci Mater Med 23(2):497–505. doi: 10.1007/s10856-011-4520-3 CrossRefGoogle Scholar
  16. 16.
    Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, Chen J, Yang Y (2003) Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene oxide)–polylactide amphiphilic copolymer nanoparticles. Biomaterials 24(13):2395–2404CrossRefGoogle Scholar
  17. 17.
    Huang M-H, Li S, Vert M (2004) Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and dl-lactide. Polymer 45(26):8675–8681. doi: 10.1016/j.polymer.2004.10.054 CrossRefGoogle Scholar
  18. 18.
    Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharm—Drug Res 67(3):217–223Google Scholar
  19. 19.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35CrossRefGoogle Scholar
  20. 20.
    Rich J, Jaakkola T, Tirri T, Närhi T, Yli-Urpo A, Seppälä J (2002) In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 23(10):2143–2150CrossRefGoogle Scholar
  21. 21.
    Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH (2004) Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release 96(1):135–148CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Wang C, Yang W, Shi B, Fu S (2005) Tri-component diblock copolymers of poly(ethylene glycol)–poly(ε-caprolactone-co -lactide): synthesis, characterization and loading camptothecin. Colloid Polym Sci 283(11):1246–1252CrossRefGoogle Scholar
  23. 23.
    Mallapragada SK, Peppas NA, Colombo P (1997) Crystal dissolution-controlled release systems. II. Metronidazole release from semicrystalline poly(vinyl alcohol) systems. J Biomed Mater Res 36(1):125–130CrossRefGoogle Scholar
  24. 24.
    Miyajima M, Koshika A, Ji O, Ikeda M, Nishimura K (1997) Effect of polymer crystallinity on papaverine release from poly (l-lactic acid) matrix. J Control Release 49(2–3):207–215CrossRefGoogle Scholar
  25. 25.
    Bramfeldt H, Sarazin P, Vermette P (2007) Characterization, degradation, and mechanical strength of poly(D, L-lactide-co-ϵ-caprolactone)-poly(ethylene glycol)-poly(D, L-lactide-co-ϵ-caprolactone). J Biomed Mater Res Part A 83A(2):503–511CrossRefGoogle Scholar
  26. 26.
    Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48(3):342–353CrossRefGoogle Scholar
  27. 27.
    Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (2000) Utilization of poly(dl-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. J Control Release 67(1):29–36CrossRefGoogle Scholar
  28. 28.
    Valle L, Camps R, Díaz A, Franco L, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res 18(6):1903–1917CrossRefGoogle Scholar
  29. 29.
    Babazadeh M, Edjlali L, Rashidian L (2007) Application of 2-hydroxyethyl methacrylate polymers in controlled release of 5-aminosalicylic acid as a colon-specific drug. J Polym Res 14(3):207–213CrossRefGoogle Scholar
  30. 30.
    Jonnalagadda S, Robinson DH (2000) A bioresorbable, polylactide reservoir for diffusional and osmotically controlled drug delivery. AAPS PharmSciTech 1(4):26–34CrossRefGoogle Scholar
  31. 31.
    Tunón Å, Börjesson E, Frenning G, Alderborn G (2003) Drug release from reservoir pellets compacted with some excipients of different physical properties. Eur J Pharm Sci 20(4–5):469–479CrossRefGoogle Scholar
  32. 32.
    Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Poly(D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23(4):1153–1160CrossRefGoogle Scholar
  33. 33.
    Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH (2005) Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials 26(7):763–769CrossRefGoogle Scholar
  34. 34.
    Sharp JS, Forrest JA, Jones RAL (2001) Swelling of Poly(dl-lactide) and Polylactide-co-glycolide in humid environments. Macromolecules 34(25):8752–8760CrossRefGoogle Scholar
  35. 35.
    Bei J, Wang W, Wang Z, Wang S (1996) Surface properties and drug release behavior of polycaprolactone polyether blend and copolymer. Polym Adv Technol 7(2):104–107CrossRefGoogle Scholar
  36. 36.
    Sutton D, Wang S, Nasongkla N, Gao J, Dormidontova EE (2007) Doxorubicin and β-Lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med 232(8):1090–1099CrossRefGoogle Scholar
  37. 37.
    Rothen-Weinhold A, Besseghir K, Gurny R (1997) Analysis of the influence of polymer characteristics and core loading on the in vivo release of a somatostatin analogue. Eur J Pharm Sci 5(6):303–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Tararat Chanlen
    • 1
    • 3
  • Suradej Hongeng
    • 2
  • Norased Nasongkla
    • 1
    • 3
    Email author
  1. 1.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Department of Pediatrics, Faculty of Medicine, Ramathibodi HospitalMahidol UniversityBangkokThailand
  3. 3.Department of Biomedical Engineering, Faculty of EngineeringMahidol UniversityNakorn PathomThailand

Personalised recommendations