Advertisement

Journal of Polymer Research

, 19:9795 | Cite as

Electrical studies of nanocomposites consisting of MWNTs and polystyrene

  • Mashael Al-Shabanat
Original Paper

Abstract

Multi-wall carbon nanotubes (MWNTs)/polystyrene (PS) nanocomposites containing different concentrations of MWNTs were prepared by the solution evaporation method. Dispersion of MWNTs in PS was achieved by using ultrasonic energy. The structure of nanocomposites was investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The dielectric constant (ε′), dielectric loss (ε″), and ac conductivity (σ ac) were measured from room temperature to 100 °C over the frequency range 103 Hz–1.2 MHz. The results show that the dielectric properties depend on both frequency and temperature and they are enhanced by increasing the MWNTs content.

Keywords

Nanocomposites Polystyrene Dielectric properties Dielectric constant Dielectric loss Ac conductivity 

References

  1. 1.
    Yang C, Lin Y, Nan CW (2009) Carbon 47:1096CrossRefGoogle Scholar
  2. 2.
    Wang Z, Lu M, Li HL, Guo X-Y (2006) Mater Chem Phys 100:77CrossRefGoogle Scholar
  3. 3.
    Liu L, Grunlan JC (2007) Adv Funct Mater 17:2343CrossRefGoogle Scholar
  4. 4.
    Yang BX, Pramoda KP, Goh SH XU GQ (2007) Adv Funct Mater 17:2062CrossRefGoogle Scholar
  5. 5.
    Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun Y-P (2004) Carbon 42:2849CrossRefGoogle Scholar
  6. 6.
    Qian D, Dickey EC, Andrews RJ, Rantell T (2000) Appl Phys Lett 76:2868CrossRefGoogle Scholar
  7. 7.
    Qian D, Dickey EC (2001) J Microsc 204:39CrossRefGoogle Scholar
  8. 8.
    Watts PCP, Hsu WK, Chen GZ, Fray DJ, Kroto HW, Walton DRM (2001) J Mater Chem 11:2482CrossRefGoogle Scholar
  9. 9.
    Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM et al (2001) Chem Commun 1450:1Google Scholar
  10. 10.
    Likozar B, Major Z (2010) Appl Surf Sci 257:565CrossRefGoogle Scholar
  11. 11.
    Panwar V, Sachdev VK, Mehra RM (2007) Eur Polym J 43:573CrossRefGoogle Scholar
  12. 12.
    Cerezo FT, Preston CML, Shanks RA (2007) Compos Sci Technol 67:79CrossRefGoogle Scholar
  13. 13.
    Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z, Fan W (2003) Polym Degrad Stab 82:127CrossRefGoogle Scholar
  14. 14.
    Zheng W, Wong SC (2003) Compos Sci Technol 63:225CrossRefGoogle Scholar
  15. 15.
    Elias H-G (1997) An introduction to polymer science. Wiley-VCH, Weinheim, p 369Google Scholar
  16. 16.
    Sui G, Jana S, Zhong WH, Fuqua MA, UIven CA (2008) Acta Mater 56:2381CrossRefGoogle Scholar
  17. 17.
    Asami K (2002) Prog Polym Sci 27:1617CrossRefGoogle Scholar
  18. 18.
    Foulger SH (1999) J Appl Polym Sci 72:1573CrossRefGoogle Scholar
  19. 19.
    Xiao M, Sun L, Liu J, Li Y, Gong K (2002) Polymer 43:2245CrossRefGoogle Scholar
  20. 20.
    Singh NL, Shah S, Qureshi A, Singh F, Avasthi DK, Ganse V (2008) Polym Degrad Stab 93:1088CrossRefGoogle Scholar
  21. 21.
    Krupa I, Novak I, Chodak I (2004) Synth Mat 145:245CrossRefGoogle Scholar
  22. 22.
    Yacubowicz J, Narkis M, Benguigui L (1990) Polym Eng Sci 30:459CrossRefGoogle Scholar
  23. 23.
    Seager CH, Pike GE (1974) Phys Rev B 10:1435CrossRefGoogle Scholar
  24. 24.
    Elliott SR (1987) Adv Phys 36:135CrossRefGoogle Scholar
  25. 25.
    Elliott SR (1977) Phil Mag B 36:1291CrossRefGoogle Scholar
  26. 26.
    Pollak M, Geballe TH (1961) Phys Rev B 122:1742CrossRefGoogle Scholar
  27. 27.
    Austin LG, Mott NF (1969) Adv Phys 18:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Chemistry DepartmentPrincess Nora bint Abdurrahman University – Science CollegeRiyadhKingdom of Saudi Arabia

Personalised recommendations