Advertisement

Journal of Polymer Research

, 19:9792 | Cite as

Electrospun nanofibers of a degradable poly(ester amide). Scaffolds loaded with antimicrobial agents

  • Luis J. del Valle
  • Manuel Roa
  • Angélica Díaz
  • María T. Casas
  • Jordi Puiggalí
  • Alfonso Rodríguez-Galán
Original Paper

Abstract

Electrospinning conditions were evaluated to prepare micro/nanofibers of a biodegradable poly(ester amide) constituted by L-alanine, 1,12-dodecanediol and sebacic acid. 1,1,1,3,3,3-Hexafluroroisopropanol appeared as the most appropriate solvent to obtain fibers in a wide range of electrospinning conditions that allowed tuning the final diameter size. Fiber diameter increased with the flow, distance between the needle tip and the collector and decreasing voltage, which made it possible to obtain homogeneous fibers in the 1700–320 nm range. Fibers were loaded with antimicrobial agents like silver and chlorohexidine, and the influence of agent concentration in the electrospinning solutions on the fiber diameter size was determined. The polymer was able to crystallize during the electrospinning process, giving rise to a structure slightly different from that obtained by solution crystallization and related to that attained after crystallization from the melt state. Addition of antimicrobial agents had little effect on the degree of crystallinity, although it decreased slightly when chlorhexidine was employed. Scaffolds prepared from the silver and chlorhexidine loaded samples supported cell adhesion and proliferation. Furthermore, a clear and well differentiated antimicrobial effect against both Gram-positive (e.g. M. luteus) and Gram-negative (e.g. E. coli) bacteria was demonstrated.

Keywords

Poly(ester amide)s Biodegradable polymers Electrospinning Scaffolds Antimicrobial agents Biocompatibility 

Notes

Acknowledgements

This research has been supported by grants from MCYT/FEDER and AGAUR (MAT2009-11503, 2009SGR-1208). We are grateful to Drs. François Fauth and Ana Labrador of the CRG BM16 beamline staff of CELLS (Consortium for the Exploitation of the Synchrotron Light Laboratory). We are also grateful to Dr. Trifon Trifonov for FIB micrographs.

References

  1. 1.
    Barbato F, la Rotonda MI, Maglio G, Palumbo R, Quaglia F (2001) Biodegradable microspheres of novel segmented poly(ether-ester-amide)s based on poly(ε-caprolactone) for the delivery of bioactive compounds. Biomaterials 22:1371–1378CrossRefGoogle Scholar
  2. 2.
    Ostacolo L, Russo P, de Rosa G, la Rotonda MI, Maglio G, Nese G, Spagnuolo G, Rengo S, Oliva A, Quaglia F (2008) Poly(ether ester amide) microspheres for protein delivery: influence of copolymer composition on technological and biological properties. Macromol Biosci 8:682–689CrossRefGoogle Scholar
  3. 3.
    Guo K, Chu CC (2009) Biodegradable and injectable paclitaxel-loaded poly(ester amide)s microspheres: fabrication and characterization. J Biomed Mater Res B Appl Biomater 89:491–500Google Scholar
  4. 4.
    Vera M, Puiggali J, Coudane J (2006) Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsul 23:686–697CrossRefGoogle Scholar
  5. 5.
    Qian ZY, Li S, He Y, Zihang HL, Liu XB (2004) Preparation of biodegradable polyesteramide microspheres. Colloid Polym Sci 282:1083–1088CrossRefGoogle Scholar
  6. 6.
    Ouchi T, Hamada A, Ohya Y (1999) Biodegradable microspheres having reactive groups prepared from L-lactic acid-depsipeptide copolymers. Macromol Chem Phys 200:436–441CrossRefGoogle Scholar
  7. 7.
    Ouchi T, Ohya Y (2004) Design of lactide copolymers as biomaterials. J Polym Sci Part A: Polym Chem 42:453–462CrossRefGoogle Scholar
  8. 8.
    Ouchi T, Toyohara M, Arimura H, Ohya Y (2002) Preparation of poly(L-lactide)-based microspheres having a cationic or anionic surface using biodegradable surfactants. Biomacromolecules 3:885–888CrossRefGoogle Scholar
  9. 9.
    Lee SH, Szinai I, Carpenter K, Katsarava R, Jokhadze G, Chu C-C, Huang Y, Verbeken E, Bramwell O, De Scheerder I, Hong MK (2002) In-vivo biocompatibility evaluation of stents coated with a new biodegradable elastomeric and functional polymer. Coron Artery Dis 13:237–241CrossRefGoogle Scholar
  10. 10.
    US 7,749,263 B2 (2008) Poly(ester amide) filler blends for modulation of coating properties. Invs: Desnoyer JR, Pacetti DP, Hossainy SFA, Kleiner L, Tang Y, Zhang G.Google Scholar
  11. 11.
    Huang Y, Wang L, Li S, Liu X, Lee K, Verbeken E, van de Werf F, de Scheerder I (2006) Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card Care 8:210–216CrossRefGoogle Scholar
  12. 12.
    US 1,952,830 (2008) Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same. Invs: Pacetti S, Desnoyer JRGoogle Scholar
  13. 13.
    20100047319 Patent application (2010) Biodegradable poly(ester-amide) and poly(amide) coatings for implantable medical devices with enhanced bioabsorption times. Invs: Ngo MH, Hossainy SFA, Lim F, Trollsas MOGoogle Scholar
  14. 14.
    John G, Morita M (1999) Synthesis and characterization of photo-cross-linked networks based on L-lactide/serine copolymers. Macromolecules 32:1853–1858CrossRefGoogle Scholar
  15. 15.
    Pang X, Chu CC (2010) Synthesis, characterization and biodegradation of poly(ester amide)s based hydrogels. Polymer 51:4200–4210CrossRefGoogle Scholar
  16. 16.
    Feng Y, Behl M, Kelch S, Lendlein A (2009) Biodegradable multiblock copolymers based on oligodepsipeptides having shape-memory properties. Macromol Biosci 9:45–54CrossRefGoogle Scholar
  17. 17.
    Horwitz JA, Shum KM, Bodle JC, Deng M, Chu CC, Reinhart-King CA (2010) Biological performance of biodegradable amino acid-based poly(ester amide)s: endothelial cell adhesion and inflammation in vitro. J Biomed Mater Res Part A 95:371–380CrossRefGoogle Scholar
  18. 18.
    Karimi P, Rizkalla AS, Mequanint K (2010) Versatile biodegradable poly(ester amide)s derived from α-amino acids for vascular tissue engineering. Materials 3:2346–2368CrossRefGoogle Scholar
  19. 19.
    Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS (2008) Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 29:2315–2325CrossRefGoogle Scholar
  20. 20.
    US 2009/0253809 A1 (2009) Bioabsorbable elastomeric polymer networks, cross-linkers and methods of use. Invs: Gomurashvili ZD, Katsarava R, Chumburdze G, Mumladze N, Tugushi DGoogle Scholar
  21. 21.
    Dai Yamanouchi D, Wu J, Lazar AN, Kent KC, Chu CC, Liu B (2008) Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 29:3269–3277CrossRefGoogle Scholar
  22. 22.
    Paredes N, Rodríguez-Galán A, Puiggalí J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Part A: Polym Chem 36:1271–1282CrossRefGoogle Scholar
  23. 23.
    Paredes N, Casas MT, Puiggalí J (2001) Poly(ester amide)s derived from glycine, even-numbered diols, and dicarboxylic acids: Considerations on the packing. J Polym Sci Part B: Polym Phys 39:1036–1045CrossRefGoogle Scholar
  24. 24.
    Paredes N, Rodríguez-Galán A, Puiggalí J, Peraire C (1998) Studies on the biodegradation and biocompatibility of a new poly(ester amide) derived from L-alanine. J Appl Polym Sci 69:1537–1549CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Galán A, Pelfort M, Aceituno JE, Puiggalí J (1999) Comparative studies on the degradability of poly(ester amide)s derived from L- and L, D-alanine. J Appl Polym Sci 74:2312–2320CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Galan A, Franco L, Puiggalí J (2011) Degradable poly(ester amide)s for biomedical applications. Polymers 3:65–99CrossRefGoogle Scholar
  27. 27.
    del Valle LJ, Roca D, Franco L, Puiggalí J, Rodríguez-Galán A (2011) Preparation and release study of ibuprofen loaded porous matrices of a biodegradable poly(ester amide) derived from L-alanine units. J Appl Polym Sci 122:1953–1967. doi: 10.1002/app.34017 Google Scholar
  28. 28.
    Boundriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs 30:785–792CrossRefGoogle Scholar
  29. 29.
    Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B 70:286–296CrossRefGoogle Scholar
  30. 30.
    WO2007090102-A2 (2007) University California, invs: Li S, Patel S, Hashi C, Huang NF, Kurpinski K, Huang N. Chem Abstr 147:243474Google Scholar
  31. 31.
    Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S (2007) Electrospun methacrylate-based copolymer/indomethacin fibers and their release characteristics of indomethacin. J Polym Res 14:53–59CrossRefGoogle Scholar
  32. 32.
    del Valle LJ, Camps R, Díaz A, Franco A, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res. doi: 10.1007/s10965-011-9597-3
  33. 33.
    Wei K, Xia J-H, Kim B-S, Kim I-S (2010) Multiwalled carbon nanotubes incorporated Bombyx mori silk nanofibers by electrospinning. J Polym Res 18:579–585CrossRefGoogle Scholar
  34. 34.
    Luo CJ, Stride E, Stoyanov S, Pelan E, Edirisinghe M (2011) Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10–200. J Polym Res. doi: 10.1007/s10965-011-9667-6
  35. 35.
    Li L, Chu CC (2009) Nitroxyl radical incorporated electrospun biodegradable poly(ester amide) nanofiber membranes. J Biomat Sci Polym Ed 20:341–361CrossRefGoogle Scholar
  36. 36.
    Kuyyakanond T, Quesnel LB (1992) The mechanism of action of chlorhexidine. FEMS Microbiol Lett 79:211–215Google Scholar
  37. 37.
    Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34CrossRefGoogle Scholar
  38. 38.
    Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90:144502–144504CrossRefGoogle Scholar
  39. 39.
    McKee MG, Elkins CL, Long TE (2004) Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer 45:8705–8715CrossRefGoogle Scholar
  40. 40.
    Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51:1654–1662CrossRefGoogle Scholar
  41. 41.
    van Krevelen DW (1990) Properties of polymers. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    van Krevelen DW, Hoftyzer PJ (1976) Newtonian shear viscosity of polymeric melts. Angew Macromol Chem 52:101–109CrossRefGoogle Scholar
  43. 43.
    Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioadsorbable nanofiber membrane. Polymer 43:4403–4412CrossRefGoogle Scholar
  44. 44.
    Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211CrossRefGoogle Scholar
  45. 45.
    Ramakrishma S, Fujihara K, Teo W (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co Pte Ltd. ISBN 10.9812564543Google Scholar
  46. 46.
    Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Materials Lett 65:999–1002CrossRefGoogle Scholar
  47. 47.
    Bryaskova R, Pencheva D, Kale GM, Umesh L, Kantardjiev T (2010) Synthesis, characterization and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85. doi: 10.1016/j.jcis.2010.04.091 CrossRefGoogle Scholar
  48. 48.
    Yu D-G (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 59:171–178. doi: 10.1016/j.colsurfb.2007.05.007 CrossRefGoogle Scholar
  49. 49.
    Hurrell S, Cameron RE (2002) The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 23:2401–2409CrossRefGoogle Scholar
  50. 50.
    Miyajima M, Koshika A, Okada J, Ikeda M, Nishimura KJ (1997) Effect of polymer crystallinity on papaverine release from poly(L-lactic acid) matrix. J Control Release 49:207–215CrossRefGoogle Scholar
  51. 51.
    Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087. doi: 10.1016/j.eurpolymmj.2006.03.032 CrossRefGoogle Scholar
  52. 52.
    Ramesh C, Keller A, Eltink SJEA (1994) Studies on the crystallization and melting of nylon-6,6: 1. The dependence of the Brill transition on the crystallization temperature. Polymer 35:2483–2487CrossRefGoogle Scholar
  53. 53.
    Yoshioka Y, Tashiro K, Ramesh C (2003) Structural change in the Brill transition of Nylon m/n (2) conformational disordering as viewed from the temperature-dependent infrared spectral measurements. Polymer 44:6407–6417CrossRefGoogle Scholar
  54. 54.
    Cui X, Yan D (2005) Preparation, characterization and crystalline transitions of odd–even polyamides 11,12 and 11,10. Eur Polym J 41:863–870CrossRefGoogle Scholar
  55. 55.
    Lessa FCR, Aranha AMF, Nogueira I, Giro EMA, Hebling J, Costa CA (2010) Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci 18:50–58CrossRefGoogle Scholar
  56. 56.
    Hidalgo E, Dominguez C (2001) Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro 15:271–276CrossRefGoogle Scholar
  57. 57.
    Mariotti AJ, Rumpf DA (1999) Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol 70:1443–1448CrossRefGoogle Scholar
  58. 58.
    Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecules 25:1632–1637Google Scholar
  59. 59.
    Park SW, Bae HS, Xing ZC, Kwon OH, Huh MW, Kang IK (2009) Preparation and properties of silver-containing nylon 6 nanofibers formed by electrospinning. J Appl Polym Sci 112:2320–2326CrossRefGoogle Scholar
  60. 60.
    Davies A (1973) The mode of action of chlorhexidine. J Periodontol Res Suppl 12:68–75CrossRefGoogle Scholar
  61. 61.
    Emilson CG (1977) Susceptibility of various microorganisms to chlorhexidine. Scand J Dent Res 85:255–265Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Luis J. del Valle
    • 1
  • Manuel Roa
    • 1
  • Angélica Díaz
    • 1
  • María T. Casas
    • 1
  • Jordi Puiggalí
    • 1
  • Alfonso Rodríguez-Galán
    • 1
  1. 1.Departament d’Enginyeria QuímicaUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations