Journal of Polymer Research

, 19:9751 | Cite as

Thermal stability and flame retardance properties of acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite nanocomposites

Original Paper


In the article, acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite (ABS/PVC/Fe-OMT) nanocomposites were prepared by melt intercalation method. In order to determine if the presence of iron ion in the structure of organophilic montmorillonite (OMT) lattice can affect thermal, flame retardance and smoke suppressant properties in the ABS/PVC blends. ABS/PVC/organophilic natural montmorillonite (Na-OMT) nanocomposites were prepared as the comparable sample. Fe-MMT and Na-MMT were treated by cetyl trimethylammonium bromide (CTAB). The information on morphologies and structures of ABS/PVC/OMT nanocomposites was obtained using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the nanocomposites were characterized by thermogravimetric analysis, and flame retardant properties were obtained via limiting oxygen index (LOI), UL-94 vertical burning test and smoke density. The nanocomposites, based on Fe-OMT, exhibited better flame retardance, better smoke suppressant properties, and lower degradation degree than those of pure ABS/PVC blends and the ABS/PVC/Na-OMT nanocomposites.


Fe-montmorillonite Nanocomposites Thermal stability Flame retardance Smoke suppressant 


  1. 1.
    Ma HY, Xu ZB, Tong LF, Gu AG, Fang ZP (2006) Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability properties. Polym Degrad Stab 91:2951–2959CrossRefGoogle Scholar
  2. 2.
    Belhaneche-Bensemra N, Bedda A (2001) Study of the properties of PVC/ABS blends. Macromol Symp 176:145–153CrossRefGoogle Scholar
  3. 3.
    Aalaie J, Rahmatpour A, Khanbabael G, Khoshniyat A (2007) Preparation and Evaluation of the Morphology, Flammability, and Mechanical Properties of the Acrylonitrile-Butadiene-Styrene/Poly (vinyl chloride) Blends. J Macromol Sci 46:1023–1032CrossRefGoogle Scholar
  4. 4.
    Mostashair SM, Moafi HF (2009) Flame-Retardancy of a cellulosic fabric by the application of synergistic effect between ammonium bromide and antimony(III) oxide. Chin J Chem 27:489–493CrossRefGoogle Scholar
  5. 5.
    Horrocks AR, Smart G, Price D, Kandola B (2009) Zinc stannates as alternative synergists in selected flame retardant systems. J Fire Sci 27:495–521CrossRefGoogle Scholar
  6. 6.
    Jiao CM, Chen XL (2009) Synergistic Flame Retardant Effect of Lanthanum Oxide in Ethylene-vinyl acetate/Aluminium Hydroxide Composites. Iran Polym J 18:723–730Google Scholar
  7. 7.
    Laoutid F, Ferry L, Lopez-Cuesta JM, Crespy A (2006) Flame-ratardant action of red/phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET. Fire Mater 30:345–358CrossRefGoogle Scholar
  8. 8.
    Sharma SK (2003) Flame retardance and smoke suppression of poly(vinyl chloride) using multicomponent systems. Fire Technol 39:247–260CrossRefGoogle Scholar
  9. 9.
    Ray SS, Makhatha ME (2009) Thermal properties of poly(ethylene succinate) nanocomposite. Polymer 50:4635–4643CrossRefGoogle Scholar
  10. 10.
    Rao YQ, Pochan JM (2007) Mechanics of polymer-clay nanocomposites. Macromolecules 40:290–296CrossRefGoogle Scholar
  11. 11.
    Abdollahi M, Rahmatpour A, Aalaie J, Khanbabae G (2008) Preparation and Evaluation of the Microstructure and Properties of Natural Rubber/Sodiummontmorillonite Nanocomposites. Iran Polym J 17:519–529Google Scholar
  12. 12.
    Dasari A, Lim SH, Yu ZZ (2007) Toughening, thermal stability, flame retardancy, and scratch-wear resistance of polymer-clay nanocomposites. Aust J Chem 60:496–518CrossRefGoogle Scholar
  13. 13.
    Li HH, Wang L, Song GJ, Gu Z, Li PY, Zhang CD, Gao L (2010) Study of NBR/PVC/OMMT Nanocomposites Prepared by Mechanical Blending. Iran Polym J 19:39–46Google Scholar
  14. 14.
    Nodehi A, Moosavian MA, Haghighi MN, Sadr AA (2007) Comparative study on the properties of ABS/Clay nanocomposites prepared by direct melt intercalation and in-situ emulsion polymerization techniques. Iran Polym J 16:185–193Google Scholar
  15. 15.
    Rightor EG, Tzou MS, Pinnavaia TJ (1991) Iron oxide pillared clay with large gallery height: synthesis and properties as a Fischer-Tropsch catalyst. J Catal 130:29–40CrossRefGoogle Scholar
  16. 16.
    Ding Z, Kloprogge JT, Frost RL, Lu GQ (2001) Porous clay and pillared clay-based catatlysts. Part 2: a review of the catalytic and molecular sieve applications. J Porous Mat 8:273–293CrossRefGoogle Scholar
  17. 17.
    Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 13:4649–4654CrossRefGoogle Scholar
  18. 18.
    Kong QH, Hu Y, Song L, Yi CW (2009) Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym Adv Technol 20:404–409CrossRefGoogle Scholar
  19. 19.
    Kong QH, Hu Y (2006) Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites. Polym Advan Technol 17:463–467CrossRefGoogle Scholar
  20. 20.
    Kong QH, Hu Y, Lu HD (2005) Synthesis and properties of polystyrene/Fe-montmorillonite nanocomposites using synthetic Fe-montmorillonite by bulk polymerization. J Mater Sci 40:4505–4509CrossRefGoogle Scholar
  21. 21.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Poly Sci 33:1119–1198CrossRefGoogle Scholar
  22. 22.
    Cai YB, Huang FL, Xia X, Wei QF, Tong XT, Tong XT, Wei AF, Gao WD (2010) Comparison between structures and properties of ABS nanocomposites derived from two different kinds of OMT. J Mater Eng Perform 19:171–176CrossRefGoogle Scholar
  23. 23.
    Ma HY, Fang ZP, Tong LF (2006) Preferential melt intercalation of clay in ABS/brominated epoxy resin–antimony oxide (BER–AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior. Polym Degrad Stabil 91:1972–1979CrossRefGoogle Scholar
  24. 24.
    Qin SH, Zhang MM, Lei JF, He M, Yu J (2009) The effect of OMMT on the morphology and mechanical properties of PVC/ABS blends. J Macromol Sci B 910–918:48Google Scholar
  25. 25.
    Wang SF, Hu Y, Song L, Wang ZZ, Chen ZY, Fan WC (2002) Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym Degrad Stab 77:423–426CrossRefGoogle Scholar
  26. 26.
    Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stab 47:217–221CrossRefGoogle Scholar
  27. 27.
    Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia R (2001) Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem Mater 13:2979–2990CrossRefGoogle Scholar
  28. 28.
    Leswzynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta (review) 453:75–96CrossRefGoogle Scholar
  29. 29.
    Leswzynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochimica Acta(review) 454:1–22CrossRefGoogle Scholar
  30. 30.
    Tsai TY, Li CH, Chang CH, Cheng WH, Hwang CL, Wu RJ (2005) Preparation of exfoliated polyester/clay nanocomposites. Advan Mater 17:1769–1773CrossRefGoogle Scholar
  31. 31.
    Carty P, Creighton JR, White S (2001) TG and Flammability studies on polymer blends containing acrylonitrile-butadiene-styrene and chlorinated poly(vinyl chloride). J Therm Anal Calorim 63:679–687CrossRefGoogle Scholar
  32. 32.
    Levchik SV, Weil ED (2005) Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym Advan Technol 16:707–716CrossRefGoogle Scholar
  33. 33.
    Stoeva S (2006) Study of poly(vinyl chloride) blends with solid-state chlorinated polyethylene. J Appl Polym Sci 101:2602–2613CrossRefGoogle Scholar
  34. 34.
    Jang JW, Kim J, Bae JY (2005) Synergistic effect of ferric chloride and silicon mixtures on the thermal stabilization enhancement of ABS. Polym Degrad Stab 90:508–514CrossRefGoogle Scholar
  35. 35.
    Kong QH, Zhang JH, Ma JJ, Yi CW (2008) Flame Retardant and Smoke Suppressant of Fe-Organophilic Montmorillonite in Polyvinyl Chloride Nanocomposites. Chin J Chem 26:2278–2284CrossRefGoogle Scholar
  36. 36.
    Xu JZ, Zhang CY, Qu QH (2005) Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J Appl Polym Sci 98:1469–1475CrossRefGoogle Scholar
  37. 37.
    Carty P, White S (2002) The effect of temperature on char formation in polymer blends: a explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends. Polym Degrad Stab 75:173–184CrossRefGoogle Scholar
  38. 38.
    Jimenez M, Duquesne S, Bourbigot S (2006) Multiscale experimental approach for developing high-performance intumescent coating. Ind Eng Chem Res 45:4500–4508CrossRefGoogle Scholar
  39. 39.
    Ma HY, Tong LF, Xu ZB, Fang ZP, Jin YM, Lu FZ (2007) A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Poly Degrad Stab 92:720–726CrossRefGoogle Scholar
  40. 40.
    Lv P, Wang ZZ, Hu KL, Fan WC (2005) Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym Degrad Stab 90:523–534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Jiangsu University Branch Center of State Key Lab of Urban Water Resource and EnvironmentJiangsu UniversityZhenjiangChina

Personalised recommendations