Journal of Polymer Research

, Volume 18, Issue 6, pp 2415–2424 | Cite as

Dimethyl silane-modified silica in polydimethylsiloxane as gas permeation mixed matrix membrane

  • Grace M. Nisola
  • Arnel B. Beltran
  • Dong Min Sim
  • Dongjoo Lee
  • Bumsuk Jung
  • Wook-Jin ChungEmail author
Original Paper


The gas transport behaviors of O2, N2, CO2 and CH4 were investigated in mixed matrix membranes (MMMs) prepared from polydimethylsiloxane (PDMS) filled with surface functionalized silica (SiO2) nanoparticles. SiO2 surface modification was performed through silanization using chlorodimethyl silane. FTIR confirmed the presence of dimethyl silane on SiO2 (Si-DMS) whereas elemental analysis showed 94.2% successful modification. Thermal gravimetric analysis revealed the improved thermal stabilities of PDMS MMMs. Field emission scanning electron microscopy revealed the uniform distribution of Si-DMS within the membrane. The effect of Si-DMS in gas permeabilities (P) was in contrast to the Maxwell model prediction. Enhanced P values of all gases in PDMS MMMs (as compared to pure PDMS) were associated to the improvement in diffusion coefficients (Dm) despite the reduction in gas solubility coefficients. The increase in Dm values was attributed to the higher free volumes in PDMS MMMs. However, slight declines (<8% of pure PDMS) in selectivities were observed. Overall, PDMS MMMs have improved performances due to enhanced gas permeabilities.


Dimethyl silane Gas permeation Membrane Nanocomposite Polydimethylsiloxane Silica 





Ideal selectivity


Gas flux




Pressure at the feed stream


Pressure at the permeate stream


Permeability of component A


Permeability of component B


Diffusion coefficient


Steady-state saturation time

Hfumed silica

H content of fumed SiO2


BET surface area


Avogadro constant


H removed in SiO2 due to silanization


Mole of DMS attached during silanization


Molecular weight of carbon




Solubility coefficient


Permeability of MMM


Permeability of pure polymeric membrane


Volume fraction of the filler


Solubility coefficient of MMM


Solubility coefficient of pure polymeric membrane


Diffusion coefficient in pure PDMS


Fractional free volume


Measured density of MMM


Weight fraction of Si-DMS in MMM


Measured density of PDMS


Measured density of Si-DMS


Zero-point volume of PDMS


Specific volume of PDMS



This work was supported by Mid-Career Research Program (No. 2010–0027608) and by Priority Research Centers Program (No. 2010–0028300) through the National Research Foundation (NRF) of Korea funded by Ministry of Education Science and Technology (MEST).


  1. 1.
    Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411CrossRefGoogle Scholar
  2. 2.
    Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507CrossRefGoogle Scholar
  3. 3.
    Moore TT, Koros WJ (2005) Non-ideal effects in organic–inorganic materials for gas separation membranes. J Mol Struct 739:87–98CrossRefGoogle Scholar
  4. 4.
    Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. J Membr Sci 145:145–154CrossRefGoogle Scholar
  5. 5.
    Smaïhi M, Jermoumi T, Marignan J, Noble RD (1996) Organic-inorganic gas separation membranes: preparation and characterization. J Membr Sci 116:211–220CrossRefGoogle Scholar
  6. 6.
    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Maekin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522CrossRefGoogle Scholar
  7. 7.
    Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar
  8. 8.
    Nunes SP, Schultz J, Peinemann KV (1996) Silicone membranes with silica nanoparticles. J Mater Sci Lett 15:1139–1141CrossRefGoogle Scholar
  9. 9.
    Gomes D, Nunes SP, Peinemann KV (2005) Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)-silica nanocomposites. J Membr Sci 246:13–25CrossRefGoogle Scholar
  10. 10.
    Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95CrossRefGoogle Scholar
  11. 11.
    Yave W, Car A, Peinemann KV, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183CrossRefGoogle Scholar
  12. 12.
    Barrer RM (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, LondonGoogle Scholar
  13. 13.
    Hill RJ (2006) Reverse-selective diffusion in nanocomposite membranes. Phys Rev Lett 96:216001-1–216001-4CrossRefGoogle Scholar
  14. 14.
    Merkel TC, Bondar V, Nagai K, Freeman BD (1999) Hydrocarbon and perfluorocarbon gas sorption in poly(dimethylsiloxane), poly(1-trimethylsilyl-1-propyne), and copolymers of tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxide. Macromolecules 32:370–374CrossRefGoogle Scholar
  15. 15.
    He Z, Pinnau I, Morisato A (2002) Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 146:11–15CrossRefGoogle Scholar
  16. 16.
    Car A, Stropnik C, Peinemann KV (2006) Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation. Desalination 200:424–426CrossRefGoogle Scholar
  17. 17.
    Ahn J, Chung WJ, Pinnau I, Guiver M (2008) Polysulfone/silica nanoparticle mixed matrix membranes for gas separation. J Membr Sci 314:123–133CrossRefGoogle Scholar
  18. 18.
    Nunes SP, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157:219–226CrossRefGoogle Scholar
  19. 19.
    Li B, Xu D, Zhang X, Jiang Z, Wang Y, Ma J, Dong X, Wu H (2010) Rubbery polymer-inorganic nanocomposite membranes: free volume characteristics on separation property. Ind Eng Chem Res 49:12444–12451CrossRefGoogle Scholar
  20. 20.
    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Maekin P, Hill AJ (2003) Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15:109–123CrossRefGoogle Scholar
  21. 21.
    Chandak MV, Lin YS, Ji W, Higgins RJ (1998) Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes. J Appl Polym Sci 67:165–175CrossRefGoogle Scholar
  22. 22.
    Pinnau I, He Z (2004) Pure and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J Membr Sci 244:227–233CrossRefGoogle Scholar
  23. 23.
    Sadrzadeh M, Shahidi K, Mohammadi T (2010) Synthesis and gas permeation properties of a single layer PDMS membrane. J Appl Polym Sci 117:33–48Google Scholar
  24. 24.
    George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017CrossRefGoogle Scholar
  25. 25.
    Tripp CP, Hair ML (1993) Chemical attachment of chlorosilanes to silica: a two-step amine-promoted reaction. J Phys Chem 97:5693–5698CrossRefGoogle Scholar
  26. 26.
    Yoshinaga K, Yoshida H, Yamamoto Y, Takakura K, Komatsu M (1992) A convenient determination of surface hydroxyl group on silica gel by conversion of silanol hydrogen to dimethylsilyl group with diffuse reflectance FTIR spectroscopy. J Colloid Interface Sci 153:207–211CrossRefGoogle Scholar
  27. 27.
    Rabek JF (1980) Experimental methods in polymer chemistry, physical principles and applications. Wiley-Interscience, New YorkGoogle Scholar
  28. 28.
    Yeom CK, Kim BS, Lee JM (1999) Precise on-line measurements of permeation transients through dense polymeric membranes using a new permeation apparatus. J Membr Sci 161:55–66CrossRefGoogle Scholar
  29. 29.
    Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315CrossRefGoogle Scholar
  30. 30.
    Berdichevsky Y (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sensor Actuat B-Chem 97:402–408CrossRefGoogle Scholar
  31. 31.
    Sigma-Aldrich, Fumed Silica (S5380) Product information, 3 pages, Missouri, USAGoogle Scholar
  32. 32.
    Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG (1998) The thermogravimetric analysis of some polysiloxanes. Polymer Degrad Stabil 61:87–93CrossRefGoogle Scholar
  33. 33.
    De Sitter K, Winberg P, D’Haen J, Dotremont C, Leysen R, Martens JA, Mullens S, Maurer FHJ, Vankelecom IFJ (2006) Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes: relation between the transport of gas and structural characteristics. J Membr Sci 278:83–91CrossRefGoogle Scholar
  34. 34.
    Bondi A (1964) Van der waals volumes and radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  35. 35.
    Becker C, Kutsch B, Krug H, Kaddami H (1998) SAXS and TEM investigations on thermoplastic nanocomposites containing functionalized silica nanoparticles. J Sol-Gel Sci Tech 13:499–502CrossRefGoogle Scholar
  36. 36.
    Okamato T, Nakamura S (2008) Thermal endurance, electrical insulating, and mechanical properties of hybrid made with poly(dimethylsiloxane) and tetraethoxysilane. Jpn J Appl Phys 47:521–526CrossRefGoogle Scholar
  37. 37.
    Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46:6001–6008CrossRefGoogle Scholar
  38. 38.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Grace M. Nisola
    • 1
  • Arnel B. Beltran
    • 1
  • Dong Min Sim
    • 1
  • Dongjoo Lee
    • 1
  • Bumsuk Jung
    • 2
  • Wook-Jin Chung
    • 1
    Email author
  1. 1.Energy and Environment Fusion Technology Center, Department of Environmental Engineering and BiotechnologyMyongji UniversityYongin CitySouth Korea
  2. 2.Laboratory of Environmental and Energy Materials, Department of Environmental Engineering and BiotechnologyMyongji UniversityYongin CitySouth Korea

Personalised recommendations