Journal of Polymer Research

, Volume 18, Issue 6, pp 1903–1917 | Cite as

Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties

  • Luis J. del Valle
  • Roger Camps
  • Angélica Díaz
  • Lourdes Franco
  • Alfonso Rodríguez-Galán
  • Jordi Puiggalí
Original Paper


Electrospun microfibers with a variable ratio between polycaprolactone and polylactide homopolymers were prepared from chloroform/acetone solutions. Thermal properties of both as-processed and melt crystallized samples were studied. Time-resolved WAXD patterns were taken during heating runs in order to evaluate the initial crystallinity and changes occurred during cold crystallization. DSC and WAXD experiments clearly indicated that fiber orientation facilitated the crystallization of polylactide, especially when fibers had a high polycaprolactone content. Triclosan could be effectively loaded by electrospinning and was well mixed in the polycaprolactone and polylactide phases. SAXS patterns allowed inferring that both polymers were also well mixed in the electrospun fibers and that triclosan hindered the lamellar stacking of polycaprolactone. Thermal properties, crystallinities and fiber surface morphologies were also significantly modified by the incorporation of triclosan. The release of drug loaded samples into different mixtures of ethanol and Sörensen medium was evaluated and the different affinity between triclosan and the two studied homopolymers was demonstrated. In this way, it was possible to obtain a series of materials with tuned release behavior and tuned antibacterial effect. The biocompatibility of all triclosan loaded polymer mixtures was evaluated by studying cell adhesion and proliferation.


Biocompatibility Crystallinity Drug delivery Electrospinning Polycaprolactone Polylactide 



This research has been supported by CICYT and FEDER grants (MAT2009-11503). We are grateful to Drs. François Fauth and Ana Labrador of the CRG BM16 beamline staff of CELLS (Consortium for the Exploitation of the Synchrotron Light Laboratory). We are also grateful to Dr. Trifon Trifonov for FIB micrographs.


  1. 1.
    Boundriot U, Dersch R, Greiner A, Wendorff JH (2006) Artif Organs 30:779–785Google Scholar
  2. 2.
    Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) J Biomed Mater Res B 70:286–296CrossRefGoogle Scholar
  3. 3.
    WO2007090102-A2 (2007) University California, invs: Li S, Patel S, Hashi C, Huang NF, Kurpinski K, Huang N; Chem Abstr 2007, 147, 243474Google Scholar
  4. 4.
    Burger C, Hsiao BS, Chu B (2006) Annu Rev Mater Res 36:333–368CrossRefGoogle Scholar
  5. 5.
    Wang C, Cheng YW, Hsu CH, Chien HS, Tsou SH. J Polym Res. Published on line 17 February 2010Google Scholar
  6. 6.
    Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A (2001) Adv Mater 13:70–72CrossRefGoogle Scholar
  7. 7.
    Kim GH, Han H, Park JH, Kim WD (2007) Polym Eng Sci 47:707–717CrossRefGoogle Scholar
  8. 8.
    US20060094320-A1 (2006) Kimberly-Clark Worldwide Inc, invs: Chen F, Huang L, Lindsay JD, Lindsay J, Chen FJ; Chem Abstr 2006, 144, 434401Google Scholar
  9. 9.
    WO2007024125-A1 (2007) University Ewha Ind Collaboration Found, invs: Lee SJ, Han S, Shim IK; Chem Abstr 2007, 146, 259095Google Scholar
  10. 10.
    Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) J Control Release 92:227–231CrossRefGoogle Scholar
  11. 11.
    Shin M, Yoshimoto H, Vacanti JP (2004) Tissue Eng 10:33–41CrossRefGoogle Scholar
  12. 12.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077–2082CrossRefGoogle Scholar
  13. 13.
    Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) J Biomed Mater Res B: App Biomater 67:675–681CrossRefGoogle Scholar
  14. 14.
    Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Polymer 44:1287–1294CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) J Biomed Mater Res B Appl Biomater 72:156–165CrossRefGoogle Scholar
  16. 16.
    Luong-Van E, Grondahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Biomaterials 27:2042–2050CrossRefGoogle Scholar
  17. 17.
    WO2005123995A1 (2005) invs: Lee JR, Jee SY, Kim HJ, Hong YT, Kim S, Park SJ; Chem Abstr 2005, 144, 89618Google Scholar
  18. 18.
    WO07092303A2 (2007) invs: Smith DJ, Ring H; Chem. Abstr. 2007, 147, 279250.Google Scholar
  19. 19.
    Chen HS, Tsai CH, Yang MC. J Polym Res. Published on line 31 March 2010Google Scholar
  20. 20.
    Xin Y, Huang Z, Jiang Z, Che L, Sun M, Wang C, Liu S. J Polym Res. Published on line 27 April 2010Google Scholar
  21. 21.
    Wu Y, Li M, Gao H (2009) J Polym Res 16:11–18CrossRefGoogle Scholar
  22. 22.
    Jones RD, Jampani HB, Newman JL, Lee AS (2000) Am J Infect Control 28:184–196CrossRefGoogle Scholar
  23. 23.
    Kockicsh S, Rees GD, Young SA, Tsiboukis J, Smart JD (2003) J Pharm Sci 9:1614–1623CrossRefGoogle Scholar
  24. 24.
    Kockisch S, Rees GD, Tsibouklis J, Smart JD (2005) Eur J Pharm Biopharm 59:207–216CrossRefGoogle Scholar
  25. 25.
    Maestrelli F, Mura P, Alonso MJ (2004) J Microencapsul 21:857–864CrossRefGoogle Scholar
  26. 26.
    Rueda DR, García-Gutiérrez MC, Nogales A, Capitán MJ, Ezquerra TA, Labrador A, Fraga E, Beltrán D, Juanhuix J, Herranz JF, Bordas J (2006) Rev Sci Instrum 77, Art. No. 033904 Part 1Google Scholar
  27. 27.
  28. 28.
    Zeng J, Chen X, Liang Q, Xu X, Ping X (2004) Macromol Biosci 4:1118–1125CrossRefGoogle Scholar
  29. 29.
    Chatani Y, Okita T, Tadokoro H, Yamashita Y (1970) Polym J 1:555–562CrossRefGoogle Scholar
  30. 30.
    Iwata T, Doi Y (2002) Polym Int 51:852–858CrossRefGoogle Scholar
  31. 31.
    de Santis P, Kovacs AJ (1968) Biopolymers 6:299–306CrossRefGoogle Scholar
  32. 32.
    Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Macromolecules 23:634–642CrossRefGoogle Scholar
  33. 33.
    Vonk CG, Kortleve G (1967) Kolloid Z Z Polym 220:19–24CrossRefGoogle Scholar
  34. 34.
    Vonk CG (1975) J Appl Cryst 8:340–341CrossRefGoogle Scholar
  35. 35.
    Varelas CG, Dixon DG, Carol S (1995) J Control Release 34:185–192CrossRefGoogle Scholar
  36. 36.
    Gibaldi M, Feldman S (1967) J Pharm Sci 56:1238–1242CrossRefGoogle Scholar
  37. 37.
    Wagner JG (1969) J Pharm Sci 58:1253–1257CrossRefGoogle Scholar
  38. 38.
    Higuchi T (1961) J Pharm Sci 50:874–879CrossRefGoogle Scholar
  39. 39.
    Higuchi T (1963) J Pharm Sci 52:1145–1149CrossRefGoogle Scholar
  40. 40.
    Baker R (1987) Controlled release of biologically active agents. Wiley, New York, Ch. 4Google Scholar
  41. 41.
    Zurita R, Puiggalí J, Rodríguez-Galán A (2006) Macromol Biosci 6:58–69CrossRefGoogle Scholar
  42. 42.
    Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318–1322CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luis J. del Valle
    • 1
  • Roger Camps
    • 1
  • Angélica Díaz
    • 1
  • Lourdes Franco
    • 1
    • 2
  • Alfonso Rodríguez-Galán
    • 1
  • Jordi Puiggalí
    • 1
    • 2
  1. 1.Departament d’Enginyeria QuímicaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Centre de Recerca en NanoEnginyeria (CRNE)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations