Advertisement

Journal of Polymer Research

, Volume 18, Issue 6, pp 1397–1407 | Cite as

Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites

  • Parveen Garg
  • Bhanu Pratap Singh
  • Gaurav Kumar
  • Tejendra Gupta
  • Indresh Pandey
  • R. K. Seth
  • R. P. Tandon
  • Rakesh Behari MathurEmail author
Original Paper

Abstract

A suitable dispersion technique and quantitative evaluation of degree of dispersion of carbon nanotubes (CNT) in any solvent and matrix system has been one of the key issues for achieving enhanced performance of CNT reinforced composites. We report the use of UV–vis spectroscopy as a useful technique to ascertain the degree of dispersion of multiwalled carbon nanotubes (MWCNT) in the epoxy resin. The study has enabled to maximize dispersion of MWCNT in the epoxy resin using two different routes. As a result the composite samples prepared with only 0.3 wt.% amine functionalized MWCNT showed flexural strength of 140 MPa over the neat resin value of 55 MPa, an improvement of ~155% which is maximum reported so far for CNT-epoxy isotropic composites.

Keywords

Nanocomposites Carbon nanotubes UV–vis spectroscopy Functionalization Mechanical properties Epoxy resin 

Notes

Acknowledgements

The authors wish to express their gratitude to Prof. R.C. Budhani, Director NPL, to accord his permission to publish the results. Authors would like to thank Mr. K.N. Sood and Mr. Parveen Saini for their support in carrying out SEM, FTIR and UV spectra of the samples. One of us (PG) is grateful to CSIR for awarding the research fellowship. The studies were supported through research grant from ASL under MoU: ASL/31/08/4052/MoU/01.

References

  1. 1.
    Yang CC, Chang FC, Wang YZ, Chan CM, Lin CL, Chen WY (2007) J Polym Res 14:431CrossRefGoogle Scholar
  2. 2.
    Leon Yu T, Chen YS (2000) J Polym Res 7:257CrossRefGoogle Scholar
  3. 3.
    Chozhan CK, Alagar M, Sharmila RJ, Gnanasundaram P (2007) J Polym Res 14:319CrossRefGoogle Scholar
  4. 4.
    Morais WA, de D’almedia JRM, Godefroid LB (2003) J Braz Soc Mech Sci Eng 25:325CrossRefGoogle Scholar
  5. 5.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  6. 6.
    Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265:1212CrossRefGoogle Scholar
  7. 7.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678CrossRefGoogle Scholar
  8. 8.
    Lu JP (1997) Phys Rev Lett 79:1297CrossRefGoogle Scholar
  9. 9.
    Wong EW, Sheehan PE, Lieber CW (1997) Science 277:1971CrossRefGoogle Scholar
  10. 10.
    Thostenson ET, Ren Z, Chow TW (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  11. 11.
    Ebbesen TW, Lezec HJ, Hiura H, Benett JW, Ghaemi HF, Thio T (1996) Nature 382:54CrossRefGoogle Scholar
  12. 12.
    Song YS, Youn JR (2005) Carbon 43:1378CrossRefGoogle Scholar
  13. 13.
    Chen Q, Dai L, Gao M, Huang S, Mau A (2001) J Phys Chem B 105:618CrossRefGoogle Scholar
  14. 14.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630CrossRefGoogle Scholar
  15. 15.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624CrossRefGoogle Scholar
  16. 16.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  17. 17.
    Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89CrossRefGoogle Scholar
  18. 18.
    Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Chem Mater 12:1049CrossRefGoogle Scholar
  19. 19.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767CrossRefGoogle Scholar
  20. 20.
    Song YS, Youn JR (2005) Carbon 4:1378CrossRefGoogle Scholar
  21. 21.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76:2868CrossRefGoogle Scholar
  22. 22.
    Andrews R, Jacques D, Qian D, Rantell T (2002) Acc Chem Res 35:1008CrossRefGoogle Scholar
  23. 23.
    Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Appl Phys Lett 81:3873CrossRefGoogle Scholar
  24. 24.
    Barber AH, Cohen SR, Wagner HD (2003) App Phys Lett 82:4140CrossRefGoogle Scholar
  25. 25.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993CrossRefGoogle Scholar
  26. 26.
    Lau K, Shi SQ, Cheng H (2002) Compos Sci Technol 63:1161CrossRefGoogle Scholar
  27. 27.
    Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Chem Phys Lett 370:820CrossRefGoogle Scholar
  28. 28.
    Geng H, Rosen R, Zheng B, Shimoda H, Fleming L, Zhou O (2002) Adv Mater 4(19):387Google Scholar
  29. 29.
    Hill DE, Lin Y, Rao AM, Allard LF, Sun YP (2002) Macromolecules 35(25):9466CrossRefGoogle Scholar
  30. 30.
    Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) J Phys Chem Part B 106:3046CrossRefGoogle Scholar
  31. 31.
    Kim JA, Seong DG, Kang TJ, Youn JR (2006) Carbon 44(10):1898CrossRefGoogle Scholar
  32. 32.
    Wang JG, Fang ZP, Gu AJ, Xu LH, Liu F (2006) J Appl Polym Sci 100:97CrossRefGoogle Scholar
  33. 33.
    Shen JF, Huang WS, Wu LP, Hu YZ, Ye MX (2007) Compos Sci Technol 67:3041CrossRefGoogle Scholar
  34. 34.
    Gojny FH, Schulte K (2004) Compos Sci Technol 64:2303CrossRefGoogle Scholar
  35. 35.
    Mathur RB, Pande S, Singh BP, Dhami TL (2008) Polym Compos 29:717CrossRefGoogle Scholar
  36. 36.
    Singh BP, Singh D, Mathur RB, Dhami TL (2008) Nanoscale Research Letters 3:444CrossRefGoogle Scholar
  37. 37.
    Yu J, Grossiord N, Konning CE, Loos J (2007) Carbon 45:618CrossRefGoogle Scholar
  38. 38.
    Zhu J, Peng H (2004) Adv Funct Mater 14:643CrossRefGoogle Scholar
  39. 39.
    Yang K, Gu M, Jin Y (2008) J App Polym Sci 110:2980CrossRefGoogle Scholar
  40. 40.
    Choi YK, Sugimoto K, Song SM, Gotoh Y, Ohkoshi Y, Endo M (2005) Carbon 3:2199CrossRefGoogle Scholar
  41. 41.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2007) Mater Sci Eng A 452:657CrossRefGoogle Scholar
  42. 42.
    Yaping Z, Aibo Z, Qinghua C, Jiaoxia Z, Rongchang N (2006) Mater Sci Eng A 435:145CrossRefGoogle Scholar
  43. 43.
    Chen W, Auad ML, Williams RJJ, Nutt SR (2006) Eur Polym J 42:2765CrossRefGoogle Scholar
  44. 44.
    Ma PC, Kim JK, Tang BZ (2007) Compos Sci Technol 67:2965CrossRefGoogle Scholar
  45. 45.
    Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Compos Sci Technol 67:3041CrossRefGoogle Scholar
  46. 46.
    Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Compos Part A 38:1331CrossRefGoogle Scholar
  47. 47.
    Geng Y, Liu MY, Li J, Shi XM, Kim JK (2007) Compos Part A 39:1876CrossRefGoogle Scholar
  48. 48.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2008) Mater Sci Eng A 475:157CrossRefGoogle Scholar
  49. 49.
    Yuen SM, Ma CCM, Chuang CY, Hsiao YH, Chiang CL, Yu A (2008) Compos Part A 39:119CrossRefGoogle Scholar
  50. 50.
    Kathi J, Rhee KY, Lee JH (2009) Compos Part A 40:800CrossRefGoogle Scholar
  51. 51.
    Nadler M, Werner J, Mahrholz T, Riedel U, Hufenbach W (2009) Compos Part A 40:932CrossRefGoogle Scholar
  52. 52.
    Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Carbon 47:1723CrossRefGoogle Scholar
  53. 53.
    Shin JW, Jeun JP, Kang PH (2009) J Ind Eng Chem 15:555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Parveen Garg
    • 1
    • 2
  • Bhanu Pratap Singh
    • 1
  • Gaurav Kumar
    • 1
  • Tejendra Gupta
    • 1
  • Indresh Pandey
    • 1
  • R. K. Seth
    • 1
  • R. P. Tandon
    • 2
  • Rakesh Behari Mathur
    • 1
    Email author
  1. 1.Carbon Technology Unit, Division of Engineering MaterialsNational Physical Laboratory, CSIRNew DelhiIndia
  2. 2.Departments of Physics and AstrophysicsDelhi UniversityDelhiIndia

Personalised recommendations