Journal of Polymer Research

, Volume 18, Issue 6, pp 1379–1384 | Cite as

Spectral investigation and laser action in solid films of fluorene-dibenzothiophene-s,s-dioxide co-polymers

  • Md. Amdadul Huq Chowdury
  • Andrew P. Monkman
  • Nazia Chawdhury
Original Paper

Abstract

A systematic optical study of a series of 9,9–dyoctylefluorene-2,7-diyl-dibenzothiophene-s,-s-dioxide-3,7-diyl co-polymers p(F-S)y has been performed where S unit (-dibenzothiophene-s,sdioxide-3,7diyl) varied from 15 to 50 mol%. We have investigated optical absorption, steady state and time resolved photoluminescence spectroscopy at room temperature and at low temperature. The emission band for all of these materials is red shifted from that of poly(9,9-dioctylfluorene). Except for p(F-S)50 all our material show one phosphorescence band at low temperature. Dual phosphorescence is observed for p(F-S)50 that are originated from different monomer units. Drop cast film of p(F-S)50 shows amplified spontaneous emission (ASE) effect peaking at 2.66 eV with FWHM at 5 nm.

Keywords

Time resolved emission Spectral narrowing Delayed fluorescence Polyfluorene copolymer 

References

  1. 1.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 347:539CrossRefGoogle Scholar
  2. 2.
    Kraft A, Grimsedale AC, Holmes AB (1998) Angew Chem Int Ed 37:402CrossRefGoogle Scholar
  3. 3.
    Perepichka DF, Meng H, Wudl F (2005) Adv Mater 17:2281CrossRefGoogle Scholar
  4. 4.
    Akcelrud L (2003) Prog Polym Sci 28:875CrossRefGoogle Scholar
  5. 5.
    Schref U, List EJW (2002) Adv Mater 14:477CrossRefGoogle Scholar
  6. 6.
    Schweitzer B, Arkhipov VI, Scherf U, Bässler H (1999) Chem Phys Lett 313(1, 2):57CrossRefGoogle Scholar
  7. 7.
    Yang L, Feng J, Liao Y, Ren A (2005) Polymer 46:9955CrossRefGoogle Scholar
  8. 8.
    Perepichka DF, Perepichka IF, Meng H, Wudl F (2006) In: Li ZR, Meng H (eds) Organic Light- Emitting Materials and Devices. CRC, Boca Raton, Chapter 2, pp 45Google Scholar
  9. 9.
    Hertel D, Romanovskii YV, Schweitzer B, Scherf U, Bässler H (2001) Macromol Symp 175:141CrossRefGoogle Scholar
  10. 10.
    Gong XO, Iyer PK, Moses D, Bazan GC, Heeger AJ, Xiao SS (2003) Adv Funct Mater 13:325CrossRefGoogle Scholar
  11. 11.
    List EJW, Guenter R, de Freitas PS, Scherf U (2002) Adv Mater 14:374CrossRefGoogle Scholar
  12. 12.
    Gaal M, List EJW, Scherf U (2003) Macromolecules 36:4236CrossRefGoogle Scholar
  13. 13.
    Perepichka II, Perichka IF, Bryce MR, Palsson LO (2005) Chem Commun 3397Google Scholar
  14. 14.
    Romaner L, Pogantsch A, de Freitas PS, Scherf U, Gaal M, Zojer E, List EJW (2003) Adv Funct Mater 13:597CrossRefGoogle Scholar
  15. 15.
    King SM, Perepichka II, Perichka IF, Dias FB, Bryce MR, Monkman AP (2009) Adv Funct Mater 19:586CrossRefGoogle Scholar
  16. 16.
    Dias FB, King S, Monkman AP, Perepichka II, Kryuchkov MA, Perepichka IF, Bryce MR (2008) J Phys Chem B 112:6557–6566CrossRefGoogle Scholar
  17. 17.
    Romanovskii YV, Gerhard A, Schweitzer B, Personov RI, Bässler H (1999) Chem Phys 249(1):29CrossRefGoogle Scholar
  18. 18.
    Romanovskii YV, Bässler H (2000) Chem Phys Lett 326(1, 2):51CrossRefGoogle Scholar
  19. 19.
    Schweitzer B, Arkhipov VI, Scherf U, Bässler H (1999) Chem Phys Lett 313(1, 2):57CrossRefGoogle Scholar
  20. 20.
    Hertel D, Romanovskii YV, Schweitzer B, Scherf U, Bässler H (2001) Synth Met 116(1–3):139CrossRefGoogle Scholar
  21. 21.
    Hertel D, Romanovskii YV, Schweitzer B, Scherf U, Bässler H (2001) Macromol Symp 175:141CrossRefGoogle Scholar
  22. 22.
    Monkman AP, Burrows HD, Hamblett I, Navaratnam S, Scherf U, Schmitt C (2000) Chem Phys Lett 327(1, 2):111CrossRefGoogle Scholar
  23. 23.
    Rothe C, Monkman AP (2003) Phys Rev B 68(7) 075208/075201–075208/075211Google Scholar
  24. 24.
    Rothe C, Güntner R, Scherf U, Monkman AP (2001) J Chem Phys 115(20):9557CrossRefGoogle Scholar
  25. 25.
    Rothe C, Monkman A (2002) Phys Rev B 65(7) 073201/073201–073201/073204Google Scholar
  26. 26.
    Sinha S, Rothe C, Güntner R, Scherf U, Monkman AP (2003) Phys Rev Lett 90(12):127402CrossRefGoogle Scholar
  27. 27.
    Monkman AP, Burrows HD, Hamblett I, Navaratnam S (2001) Chem Phys Lett 340(5, 6):467CrossRefGoogle Scholar
  28. 28.
    Burrows HD, Seixas de Melo J, Serpa C, Arnaut LG, Miguel MG, Monkman AP, Hamblett I, Navaratnam S (2002) Chem Phys 285(1):3CrossRefGoogle Scholar
  29. 29.
    Hayer A, Bässler H, Falk B, Schrader SJ (2002) Phys Chem A 106(46):11045CrossRefGoogle Scholar
  30. 30.
    Rothe C, Galbrecht F, Scherf U, Monkman AP (2006) Adv Mater 18:2137–2140CrossRefGoogle Scholar
  31. 31.
    Rothe C, King SM, Dias F, Monkman AP (2004) Phys Rev B 70:195213CrossRefGoogle Scholar
  32. 32.
    Moses D (1992) Appl Phys Lett 60:3215CrossRefGoogle Scholar
  33. 33.
    Hide F, Díaz-García MA, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1996) Science 273(5283):1833CrossRefGoogle Scholar
  34. 34.
    Jeoung SC, Jeong DH, Ahn T, Han J-Y, Jang M-S, Shim H-K, Kim D (2002) J Phys Chem B106(35):8921Google Scholar
  35. 35.
    Long X, Grel M, Malinowski A, Bradley DDC, Inbasekara M, Woo EP (1998) Opt Mat 9(1–4):70CrossRefGoogle Scholar
  36. 36.
    Denton GJ, Tessler N, Stevens MA, Friend RH (1997) Adv Mater 9(7):547CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Md. Amdadul Huq Chowdury
    • 1
  • Andrew P. Monkman
    • 2
  • Nazia Chawdhury
    • 1
  1. 1.Department of PhysicsShahjalal University of Science and TechnologySylhetBangladesh
  2. 2.OEM Research Group, Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations