Advertisement

Journal of Polymer Research

, Volume 18, Issue 6, pp 1261–1268 | Cite as

Synthesis of high refractive index polyamides containing thioether unit

  • Gang Zhang
  • Guang-shun Huang
  • Xiao-jun Wang
  • Sheng-ru Long
  • Jie Yang
Original Paper

Abstract

Two kinds of aromatic dibenzoyl chloride monomer containing thioether unit 4,4′-Bis(4-chloroformylphenylthio)benzophenone (BP-DC) and 4,4′-thiodibenzoyl chloride (T-DC) were synthesized with two steps, which was reacted with diamine monomer containing thioether and amide unit to prepare a new kind of polyamide containing high quantity thio-ether group. The intrinsic viscosity of the polyamides was 0.76–0.90 dl/g obtained with optimum synthesis conditions. The polymers were found to have good optical properties: the optical transmittance of the aromatic polyamide film at 450 nm is higher than 80%, meantime the high quantity thio-ether unit provided the polymer with a high refractive index ranging from 1.691 to 1.696 and low birefringence of 0.007–0.008. At the same time the polymers had excellent thermal performance with glass transition temperature (Tg) of 226 °C–278 °C, initial degradation temperature (Td) of 427 °C–439 °C. They showed improved solubility in polar aprotic solvents.

Keywords

Polyamide Refractive index Birefringence Heat-resistance Solubility 

Notes

Acknowledgement

This work was supported by research grants from National High Technology Foundation of China (863 program, Grant No.: 2007AA03Z561).

References

  1. 1.
    Suwa M, Niwa H, Tomikawa M (2006) J Photopolym Sci Technol 19:275–276CrossRefGoogle Scholar
  2. 2.
    Kunugi Y, Miller L, Maki T, Canavesi A (1997) Chem Mater 9:1061–1062CrossRefGoogle Scholar
  3. 3.
    Geiger F, Stoldt M, Schweizer H, Bauerle P, Umbach E (1993) Adv Mater 5:922–925CrossRefGoogle Scholar
  4. 4.
    Ju YG, Almuneau G, Kim TH, Lee BW (2006) Jpn J Appl Phys 45:2546–2549CrossRefGoogle Scholar
  5. 5.
    Kitamura K, Okada K, Fujita N, Nagasaka Y, Ueda M, Sekimoto Y, Kurata Y (2004) Jpn J Appl Phys 43:5840–5844CrossRefGoogle Scholar
  6. 6.
    Matsuda T, Funae Y, Yoshida M, Yamamoto T, Takaya T (2000) J Appl Polym Sci 76:45–49CrossRefGoogle Scholar
  7. 7.
    Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Chem Mater 20:273–281CrossRefGoogle Scholar
  8. 8.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) J Polym Sci Part A: Polym Chem 45:5606–5617CrossRefGoogle Scholar
  9. 9.
    You NH, Nakamura Y, Suzuki Y, Higashihara T, Ando S, Ueda M (2009) J Polym Sci Part A: Polym Chem 47:4886–4894CrossRefGoogle Scholar
  10. 10.
    You NH, Fukuzaki N, Suzuki Y, Nakamura Y, Higashihara T, Ando S, Ueda M (2009) J Polym Sci Part A: Polym Chem 47:4428–4434CrossRefGoogle Scholar
  11. 11.
    Ando S, Fujigaya T, Ueda M (2002) J Appl Phys 41:L105–L108CrossRefGoogle Scholar
  12. 12.
    Matsuda T, Funae Y, Yoshida M, Takaya T (1999) J Macromol Sci, Part A Pure Appl Chem A36:1271–1288Google Scholar
  13. 13.
    Sawada T, Ando S (1998) Chem Mater 10:3368–3378CrossRefGoogle Scholar
  14. 14.
    Lu CL, Cui ZC, Wang YX, Yang B, Shen JC (2003) J Appl Polym Sci 89:2426–2430CrossRefGoogle Scholar
  15. 15.
    Nebioglu A, Leon JA, Khudyakov IV (2008) Ind Eng Chem Res 47:2155–2159CrossRefGoogle Scholar
  16. 16.
    Terraza CA, Liu JG, Nakamura Y, Shibasaki Y, Ando S (2008) J Polym Sci Part A: Polym Chem 346:1510–1520CrossRefGoogle Scholar
  17. 17.
    Seesukphronrarak S, Kawasaki S, Kobori K, Takata T (2007) J Polym Sci Part A: Polym Chem 45:3073–3082CrossRefGoogle Scholar
  18. 18.
    Liou GS, Lin PH, Yen HJ, Yu YY, Chen WC (2010) J Polym Sci Part A: Polym Chem 48:1433–1440CrossRefGoogle Scholar
  19. 19.
    Yang J, Zhang G, Long SR, Wang XJ, Liu J, Chen YR (2008) CN Patent 101215379Google Scholar
  20. 20.
    Zhang G, Liu J, Zhang ML, Liu SL, Long SR, Yang J (2009) J Macromol Sci Part A: Pure and Appl Chem 46:1015–1023CrossRefGoogle Scholar
  21. 21.
    Lucas M, Brock P, Hedrick JL (1993) J Polym Sci Part A: Polym Chem 31(9):2179–2185CrossRefGoogle Scholar
  22. 22.
    Zhang G, Zhao TP, Wang YL, Liu SL, Long SR, Yang J (2010) J Macromol Sci Part A: Pure and Appl Chem 47:291–301CrossRefGoogle Scholar
  23. 23.
    Yang J, Zhang G, Long SR, Wang XJ (2009) CN Patent 101429279Google Scholar
  24. 24.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Polym J 39:543–550CrossRefGoogle Scholar
  25. 25.
    Williams FJ (1976) US Patent 3933862Google Scholar
  26. 26.
    Yan JL, Wang Z, Gao LX, Ding MX (2005) Polymer 46:7678–7683CrossRefGoogle Scholar
  27. 27.
    Ding Y, Hay AS (1996) Macromolecules 29:6386–6392CrossRefGoogle Scholar
  28. 28.
    Oishi Y, Kakimoto MA, Imai Y (1988) Macromolecules 21(3):547–550CrossRefGoogle Scholar
  29. 29.
    Oishi Y, Kakimoto MA, Imai Y (1991) J Polym Sci Part A: Polym Chem 29(13):1925–1931CrossRefGoogle Scholar
  30. 30.
    Mehdipour-Ataei S, Barikani M (1999) Iran Polym J 8(1):3–8Google Scholar
  31. 31.
    Mehdipour-Ataei S, Tadjarodi A, Babanzadeh S (2007) Eur Polym J 43(2):498–506CrossRefGoogle Scholar
  32. 32.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Macromolecules 40:4614–4620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gang Zhang
    • 1
  • Guang-shun Huang
    • 3
  • Xiao-jun Wang
    • 1
  • Sheng-ru Long
    • 1
  • Jie Yang
    • 1
    • 2
  1. 1.Institute of Materials Science & TechnologySichuan UniversityChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Polymer Materials Engineering of ChinaSichuan UniversityChengduPeople’s Republic of China
  3. 3.College of Polymer Materials Science and Engineering of ChinaSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations