Journal of Polymer Research

, Volume 18, Issue 4, pp 843–857 | Cite as

Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites

  • Artee Arora
  • Veena ChoudharyEmail author
  • D. K. Sharma
Original Paper


In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.


Polymer nanocomposites Melt blending Polystyrene Intercalation Exfoliation 


  1. 1.
    Bhiwankar NN, Weiss RA (2006) Polymer 47:6684–6691CrossRefGoogle Scholar
  2. 2.
    Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719–1725CrossRefGoogle Scholar
  3. 3.
    Wang MS, Pinnavaia TJ (1994) Chem Mater 6:468–474CrossRefGoogle Scholar
  4. 4.
    Hasegawa N, Okamoto H, Kawasumi M, Usuki A (1999) J Appl Polym Sci 74:3359–3364CrossRefGoogle Scholar
  5. 5.
    Burmistr MV, Sukhyy KM, Shilov VV, Pissis P, Spanoudaki A, Sukha IV, Tomilo VI, Gomza YP (2005) Polymer 46:12226–12232CrossRefGoogle Scholar
  6. 6.
    Su S, Jiang DD, Wilkie CA (2004) Polym Degrad Stab 84:269–277CrossRefGoogle Scholar
  7. 7.
    Su S, Wilkie CA (2003) J Polym Sci Part A: Polym Chem 41:1124–1135CrossRefGoogle Scholar
  8. 8.
    Kong Q, Lv R, Zhang S (2008) J Polym Res 15:453–458CrossRefGoogle Scholar
  9. 9.
    Dazhu C, Haiyang Y, Pingsheng H, Weian Z (2005) Compos Sci Technol 65:1593–1600CrossRefGoogle Scholar
  10. 10.
    Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573–575CrossRefGoogle Scholar
  11. 11.
    Chen G, Liu S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189–1193CrossRefGoogle Scholar
  12. 12.
    Essawy HA, Badran AS, Youssef AM, Hakim A (2004) Macromol Chem Phys 205:2366–2370CrossRefGoogle Scholar
  13. 13.
    He J, Shen Y, Evans DG (2008) Microporous Mesoporous Mater 109:73–83CrossRefGoogle Scholar
  14. 14.
    Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Macromolecules 36:4188–4194CrossRefGoogle Scholar
  15. 15.
    Morgan AB, Harris JD (2004) Polymer 45:8695–8703CrossRefGoogle Scholar
  16. 16.
    Zha W, Choi S, Lee KM, Han CD (2005) Macromolecules 38:8418–8429CrossRefGoogle Scholar
  17. 17.
    Shi S, Zhang L, Li J (2009) J Polym Res 16:395–399CrossRefGoogle Scholar
  18. 18.
    Chiu F, Chu P (2006) J Polym Res 13:73–78CrossRefGoogle Scholar
  19. 19.
    Dimitry QIH, Abdeen ZI, Ismail EA, Saad ALG (2009) J Polym Res. doi: 10.1007/s10965-009-9371-Y
  20. 20.
    Turri S, Alborghetti L, Levi M (2008) J Polym Res 15:365–372CrossRefGoogle Scholar
  21. 21.
    Mirmohseni A, Zavareh S (2010) J Polym Res 17:191–201CrossRefGoogle Scholar
  22. 22.
    Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW (2001) Polymer 42:9513–9522CrossRefGoogle Scholar
  23. 23.
    Nshuti C, Wilkie CA (2007) Polym Degrad Stab 92:1803–1812CrossRefGoogle Scholar
  24. 24.
    Mukherji M, Bose S, Nayak GC, Das CK (2010) J Polym Res 17:265–272CrossRefGoogle Scholar
  25. 25.
    As’habi L, Jafari SH, Khonakdar HA, Baghaei B (2010) J Polym Res. doi: 10.1007/s10965-010-9407-3
  26. 26.
    Chow WS, Ooi KH (2007) Malaysian Polym J 2:1–9Google Scholar
  27. 27.
    Frankowski DJ, Capracotta MD, Martin JD, Khan SA, Spontak RJ (2007) Chem Mater 19:2757–2767CrossRefGoogle Scholar
  28. 28.
    Gilman JW, Awad WH, Davis RD, Shields J, Harris RH Jr, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, Dulong HC (2002) Chem Mater 14:3776–3785CrossRefGoogle Scholar
  29. 29.
    Stretz HA, Paul DR (2006) Polymer 47:8527–8535CrossRefGoogle Scholar
  30. 30.
    Ishida H, Campbell S, Blackwell J (2000) Chem Mater 12:1260–1267CrossRefGoogle Scholar
  31. 31.
    Li LY, Li CY, Ni CY, Rong LX, Hsiao B (2007) Polymer 48:3452–3460CrossRefGoogle Scholar
  32. 32.
    Marales-Teyssier O, Sanchez-Valdes S, Ramos-de Valle LF (2006) Macromol Mater Eng 291:1547–1555CrossRefGoogle Scholar
  33. 33.
    Gryshchuk O, Karger-Koesis J, Thomann R, Konya Z, Kiriesi J (2006) Compos Part A 37:1252–1259CrossRefGoogle Scholar
  34. 34.
    Ghose S, Watson KA, Delozuer DM, Working DC, Siochi EJ, Connell JW (2006) Compos Part A 37:465–475CrossRefGoogle Scholar
  35. 35.
    Mrozek RA, Kim BS, Holmberg VC, Taton TA (2003) Nano Lett 3:1665–1669CrossRefGoogle Scholar
  36. 36.
    Bliznyuk VN, Singamaneni S, Sangford RL, Chiappetta D, Crooker B, Shibaev PV (2006) Polymer 47:3915–3921CrossRefGoogle Scholar
  37. 37.
    Zhao B, Hu H, Haddon RC (2004) Adv Funct Mater 14:71–76CrossRefGoogle Scholar
  38. 38.
    Ago H, Petritseh K, Shaffer MSP, Windle AH, Friend RH (1999) Adv Mater 11:1281–1285CrossRefGoogle Scholar
  39. 39.
    Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Ultrason Sonochem 15:1033–1037CrossRefGoogle Scholar
  40. 40.
    Garcia-Lopez D, Gobernado-mitre I, Fernandez JF, Merin JC, Paslor JM (2005) Polymer 46:2758–2765CrossRefGoogle Scholar
  41. 41.
    Dong Y, Bhattacharyya D (2008) Composites: Part A 39:1177–1191CrossRefGoogle Scholar
  42. 42.
    Brostow W, Hagg Lobland HE (2008) Predicting wear from mechanical properties of thermoplastic polymers. Polym Eng Sci 48:1982–1985CrossRefGoogle Scholar
  43. 43.
    Rabello M (2000) Aditivacao de polimeros, Artliber, Sao Paulo, pp 242–247Google Scholar
  44. 44.
    Maiti SN, Singh G, Ibrahim MN, Appl J (2003) Polym Sci 87:1511–1518Google Scholar
  45. 45.
    Osman MA, Atallah A, Schweizer T, Ottinger HC (2004) J Rheol 48:1167–1184CrossRefGoogle Scholar
  46. 46.
    Mishra S, Sonawane S, Mukherji A, Mruthyun-jaya HC (2006) J Appl Polym Sci 100:4190–4196CrossRefGoogle Scholar
  47. 47.
    Brostow W, Gorman BP, Olea-Mejia O (2007) Mater Lett 61:1333–1336CrossRefGoogle Scholar
  48. 48.
    Zhelezny L, Kobylyansky Y, Mishchuk O (2007) Chem Technol 1:97–101Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Energy StudiesIndian Institute of TechnologyNew DelhiIndia
  2. 2.Centre for Polymer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations