Advertisement

Journal of Polymer Research

, Volume 18, Issue 1, pp 79–88 | Cite as

Magnetite core-shell nano-composites with chlorine functionality: preparation by miniemulsion polymerization and characterization

  • Mohamed S. A. DarwishEmail author
  • Stefanie Machunsky
  • Urs Peuker
  • Ulrich Kunz
  • Thomas Turek
Original Paper

Abstract

Magnetic composite particles with a magnetic core consisting of superparamagnetic iron oxide and a cover layer of hydrophobic polyvinylbenzylchloride are described. The magnetite was prepared by precipitation starting with mixed iron II and iron III salts and coating of the solid with oleic acid. The coating is conducted via the liquid–liquid phase transfer. Thereby oleic acid adsorbed on the magnetite surface. In a second step the oleic acid treated magnetite was coated with polyvinylbenzylchloride in a miniemulsion polymerization to get a protective layer. The obtained magnetite core-shell nano-composites with chlorine functionality were characterized by different methods: particle size measurement, acid treatment, iron content, morphology and elemental profiles across the composite particles diameter. The test result reveals the binding of the iron oxide inside the composites which can be also recognize in TEM pictures.

Keywords

Nano-composite characterization Magnetite core-shell with chlorine functionality Miniemulsion polymerization 

Notes

Acknowledgements

The authors gratefully acknowledge the support of this study by the Ministry of Higher Education, Egypt. We also thank Dr. Lilienkamp, Institute of Physics, Clausthal University of Technology, for his engagement in the AES measurements.

References

  1. 1.
    Nunes RCR, Fonseca JLC, Pereira MR (2000) Polym Test 19:93CrossRefGoogle Scholar
  2. 2.
    Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR (2001) Polym Test 20:707CrossRefGoogle Scholar
  3. 3.
    Qiu WL, Luo YJ, Chen FT, Duo YQ, Tan HM (2003) Polymer 44:21Google Scholar
  4. 4.
    Khrenov V, Klapper M, Koch M, Mullen K (2005) Macromol Chem Phys 206:95CrossRefGoogle Scholar
  5. 5.
    Zhang ZM, Wan MX, Wie Y (2005) Nanotechnology 16:2827CrossRefGoogle Scholar
  6. 6.
    Spanova A, Horak D, Soudkova E, Rittich B (2004) J Chromatogr B 800:27CrossRefGoogle Scholar
  7. 7.
    Korolev V, Ramazanova A, Blinov A (2002) Russ Chem Bull 51:2044CrossRefGoogle Scholar
  8. 8.
    Kholmetskii A, Vorobyova S, Lesnikovich A, Mushinskii V, Sobal N (2005) Mater Lett 59:1993CrossRefGoogle Scholar
  9. 9.
    Bizdoaca EL, Spasova M, Farle M, Hilgendorff M, Caruso FJ (2002) Magn Magn Mater 240:44CrossRefGoogle Scholar
  10. 10.
    Dumazet-Bonnamour I, Le Perchec P (2000) Colloid Surface A 173:61CrossRefGoogle Scholar
  11. 11.
    Veiga V, Ryan D, Sourty E, Llanes F, Marchessault R (2000) Carbohydr Polym 42:353CrossRefGoogle Scholar
  12. 12.
    U.S. Patent 5,976,426, inv.: J Richard (1999)Google Scholar
  13. 13.
    Hurak D (2001) J Polym Sci Part A Polym Chem 39:3703Google Scholar
  14. 14.
    Cocker T, Fee C, Evans R (1997) Biotechnol Bioeng 53:79CrossRefGoogle Scholar
  15. 15.
    Zaitsev V, Filimonov D, Presnyakov I, Gambino R, Chu B (1999) Colloid Interface Sci 212:49CrossRefGoogle Scholar
  16. 16.
    Hoffmann D, Landfester K, Antonietti M (2001) Magnetohydrodynamics 37:217Google Scholar
  17. 17.
    Tronc F, Li M, Lu J, Winnik AM, Kaul LB, Graciet JC (2003) J Polym Sci Part A Polym Chem 41:766CrossRefGoogle Scholar
  18. 18.
    Antonietti M, Landfester K (2002) Prog Polym Sci 27:689CrossRefGoogle Scholar
  19. 19.
    Sood A, Awasthi SK (2003) J Appl Polym Sci 88:3058CrossRefGoogle Scholar
  20. 20.
    Landfester K (2001) Macromol Rapid Commun 22:896CrossRefGoogle Scholar
  21. 21.
    Banert T, Peuker UA (2006) J Mater Science 41:3051CrossRefGoogle Scholar
  22. 22.
    Machunsky S, Grimm P, Schmid HJ, Peuker UA (2009) Colloids Surf, A Physicochem Eng 348:186CrossRefGoogle Scholar
  23. 23.
    Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ (2006) J Magn Magn Mat 306:248CrossRefGoogle Scholar
  24. 24.
    Ramirez LP, Landfester K (2003) Macromol Chem Phys 204:22CrossRefGoogle Scholar
  25. 25.
    Nunes JS, de Vasconcelos CL, Cabral FAO, de Araújo JH, Pereira MR, Fonseca JLC (2006) Polymer 47:7646CrossRefGoogle Scholar
  26. 26.
    ASTM E394-00 (2000) Standard Test Method for Iron in Trace Quantities Using the 1,10-Phenanthroline MethodGoogle Scholar
  27. 27.
    Yan F, Li J, Zhang J, Liu F, Yang W (2009) J Nanopart Res 11:289CrossRefGoogle Scholar
  28. 28.
    Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE (2004) J Magn Magn Mater 279:210CrossRefGoogle Scholar
  29. 29.
    Brggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, UK, p 521Google Scholar
  30. 30.
    Motawie AM, Ismail EA, Ramadan AM, Mazroua AM, MS Abd El aziem (2004) Trans Egypt Soc Chem Eng (TESCE) 30:419Google Scholar
  31. 31.
    Zhang L, He R, Gu HC (2006) Appl Surf Sci 253:2611CrossRefGoogle Scholar
  32. 32.
    Harrison SA, Tolberg WE (1953) J Am Oil Chem Soc 30:114Google Scholar
  33. 33.
    Falkenburg LB, Hill WH, Wolff H (1952) J Am Oil Chem Soc 29:7Google Scholar
  34. 34.
    Shen L, Stachowiak AT, Hatton A, Laibinis PE (2000) Langmuir 16:9907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mohamed S. A. Darwish
    • 1
    Email author
  • Stefanie Machunsky
    • 2
  • Urs Peuker
    • 2
  • Ulrich Kunz
    • 1
  • Thomas Turek
    • 1
  1. 1.Institute of Chemical Process EngineeringClausthal-ZellerfeldGermany
  2. 2.Institute of Mechanical Process Engineering and Mineral ProcessingFreibergGermany

Personalised recommendations