Journal of Polymer Research

, Volume 17, Issue 2, pp 241–246 | Cite as

Kinetics and latex particles analysis on styrene emulsion polymerization induced by 60Co γ rays in presence of anionic polymerizable emulsifier

  • Xinbo Wang
  • Longnan Huang
Original Paper


60Co γ rays induced styrene emulsion polymerizations were carried out with sodium undec-10-enoate (UDNa) as emulsifier at room temperature and the different kinetics was discussed. The influence of absorbed dose rate, monomer concentration and emulsifier concentration on kinetics and latex particles was studied. The polymerization kinetics relation was found as R P D0.37·M0.75·E0.70 (R P , maximum polymerization rate; D, absorbed dose rate; M, monomer concentration; E, emulsifier concentration). The particles’ diameter increases and particle size distribution (PSD) becomes narrower with the decrease of absorbed dose rate and increase of monomer content. The effect of UDNa content on particles’ diameter and particle size distribution is the same as that of emulsifier in conventional emulsion system. This type of emulsion polymerization can easily form monodisperse particles.


60Co γ rays induced emulsion polymerization Polystyrene Particle size distribution Kinetics Polymerizable emulsifier 



This work was financially supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (IMXK57080027) and the Research Foundation Harbin Institute of Technology at Weihai (IMJQ10070013).


  1. 1.
    Greene BW, Sheetz DP (1970) J Colloid Interface Sci 32:96. doi: 10.1016/0021-9797(70)90106-2 CrossRefGoogle Scholar
  2. 2.
    DiGioia FA, Nelson RE (1953) Ind Eng Chem Res 45:745. doi: 10.1021/ie50520a028 CrossRefGoogle Scholar
  3. 3.
    Holmberg K (1992) Prog. Org. Coat. 20:325. doi: 10.1016/0033-0655(92)80022-O CrossRefGoogle Scholar
  4. 4.
    Mobarakeh HS, Roudboneh MH (2006) J Polym Res 13:421. doi: 10.1007/s10965-006-9062-x CrossRefGoogle Scholar
  5. 5.
    Guyot A (1996) Curr Opin Colloid Interface Sci 1:580CrossRefGoogle Scholar
  6. 6.
    Urquiola MB, Dimonie VL, Sudol ED, El-Aasser MS (1992) J. Polym. Sci. Polym. Chem. Ed. 30:2619. doi: 10.1002/pola.1992.080301216 CrossRefGoogle Scholar
  7. 7.
    Dai Q, Wu DZ, Zhang ZC, Ye Q (2003) Polymer (Guildf) 44:73. doi: 10.1016/S0032-3861(02)00728-0 CrossRefGoogle Scholar
  8. 8.
    El-Mohdy HLA, Ghanem S (2009) J Polym Res 16:1. doi: 10.1007/s10965-008-9196-0 CrossRefGoogle Scholar
  9. 9.
    El-Mohdy HLA, El-Rehim HAA (2009) J Polym Res 16:63. doi: 10.1007/s10965-008-9203-5 CrossRefGoogle Scholar
  10. 10.
    Chen SA, Chang HS (1985) J. Polym. Sci. Polym. Chem. 23:2615Google Scholar
  11. 11.
    Wang X, Sudol ED, El-Aasser MS (2001) J. Polym. Sci. Polym. Chem. Ed. 39:3093. doi: 10.1002/pola.1290 CrossRefGoogle Scholar
  12. 12.
    Wang X, Sudol ED, El-Aasser MS (2001) Langmuir 17:6865. doi: 10.1021/la010641n CrossRefGoogle Scholar
  13. 13.
    Guyot A, Âbele S, Sjöberg M, Hamaide T, Zicmanis A (1997) Langmuir 13:176. doi: 10.1021/la960577n CrossRefGoogle Scholar
  14. 14.
    Guyot A, Âbele S, Zicmanis A, Graillat C, Monnet C (1999) Langmuir 15:1033. doi: 10.1021/la980562k CrossRefGoogle Scholar
  15. 15.
    Guyot A, Soula O (1999) Langmuir 15:7956. doi: 10.1021/la9817009 CrossRefGoogle Scholar
  16. 16.
    Larrabee CE, Sprague ED (1979) J. Polym. Sci. Polym. Let. Ed. 17:749. doi: 10.1002/pol.1979.130171201 CrossRefGoogle Scholar
  17. 17.
    Ye Q, Ge XW, Zhang ZC (2003) Radiat Phys Chem 66:11. doi: 10.1016/S0969-806X(02)00307-9 CrossRefGoogle Scholar
  18. 18.
    Xu XL, Ge XW, Zhang ZC, Zhang MW (1998) Polymer (Guildf) 39:5321. doi: 10.1016/S0032-3861(97)10205-1 CrossRefGoogle Scholar
  19. 19.
    Zaragoza-Contreras EA, Navarro-Rodríguez D (2003) Polymer (Guildf) 44:5541. doi: 10.1016/S0032-3861(03)00621-9 CrossRefGoogle Scholar
  20. 20.
    Larrabee CE Jr, Estel D (1979) J. Polym. Sci. Polym. Lett. 17:749CrossRefGoogle Scholar
  21. 21.
    Ye Q, Ge XW, Zhang ZC (2003) Radiat Phys Chem 66:11. doi: 10.1016/S0969-806X(02)00307-9 CrossRefGoogle Scholar
  22. 22.
    Xu XL, Fei B, Zhang ZC, Zhang MW (1996) J. Polym. Sci. Polym. Chem. 34:1657. doi: 10.1002/(SICI)1099-0518(19960715) 34:9<1657::AID-POLA2>3.0.CO;2-P CrossRefGoogle Scholar
  23. 23.
    Ober CK, Hair ML (1987) J. Polym. Sci. Pol. Chem. Ed. 25:1395. doi: 10.1002/pola.1987.080250516 CrossRefGoogle Scholar
  24. 24.
    Xu ZS, Yi CF, Cheng SY, Zhang JZ (1997) J Appl Polym Sci 66:1. doi: 10.1002/(SICI)1097-4628(19971003)66:1<1::AID-APP1>3.0.CO;2-X CrossRefGoogle Scholar
  25. 25.
    Xu ZS, Lu GH, Cheng SY, Li JZ (1995) J Appl Polym Sci 56:575. doi: 10.1002/app.1995.070560506 CrossRefGoogle Scholar
  26. 26.
    Lamer VK, Dinegar RH (1975) J Am Chem Soc 72:4847. doi: 10.1021/ja01167a001 CrossRefGoogle Scholar
  27. 27.
    Naka Y, Kaetsu I, Yamamoto Y, Hayashi K (1991) J. Polym. Sci. Polym. Chem. 29:1197. doi: 10.1002/pola.1991.080290814 CrossRefGoogle Scholar
  28. 28.
    Liu J, Chew CH, Gan LM, Teo WK, Gan LH (1997) Langmuir 13:4988. doi: 10.1021/la970252m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of Technology at WeihaiWeihaiPeople’s Republic of China

Personalised recommendations