Journal of Polymer Research

, 17:109 | Cite as

Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene

  • Mingliang Du
  • Baochun Guo
  • Jingjing Wan
  • Quliang Zou
  • Demin Jia
Original Paper

Abstract

Halloysite nanotubes (HNTs), a kind of naturally occurring silicates possessing typical fibular structure, were introduced to fabricate polypropylene (PP)/HNTs nanocomposites. The non-isothermal crystallization behaviors were investigated by differential scanning calorimetry (DSC) method according to different treatments. The results suggest, with the inclusion of HNTs in PP matrix, the nanocomposites crystallize at higher temperature regime, which are correlated with the heterogeneous nucleating effects of HNTs during the crystallization process of PP. The kinetics studies of crystallization show that PP nanocomposites possess faster crystallization process and higher activation energy due to the nucleating effect and hindrance effect of HNTs to the motion of PP chains. The polarized light microscopy (PLM) observations further show that HNTs serve as nucleation sites and accelerate the crystallization process.

Keywords

Crystallization Halloysite nanotubes Polypropylene Activation energy 

References

  1. 1.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539–1641. doi:10.1016/j.progpolymsci.2003.08.002 CrossRefGoogle Scholar
  2. 2.
    Gilman JW (1999) Appl Clay Sci 15(1-2):31–49. doi:10.1016/S0169-1317(99)00019-8 CrossRefGoogle Scholar
  3. 3.
    Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Macromolules 30(20):6333–6338. doi:10.1021/ma961786h CrossRefGoogle Scholar
  4. 4.
    Chan CM, Wu JS, Li JX, Cheung YK (2002) Polymer (Guildf) 43(10):2981–2992. doi:10.1016/S0032-3861(02)00120-9 CrossRefGoogle Scholar
  5. 5.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194–5205. doi:10.1021/ma060733p CrossRefGoogle Scholar
  6. 6.
    Ji XL, Hampsey JE, Hu QY, He JB, Yang ZZ, Lu YF (2003) Chem Mater 15(19):3656–3662. doi:10.1021/cm0300866 CrossRefGoogle Scholar
  7. 7.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40(4):383–426. doi:10.1180/0009855054040180 CrossRefGoogle Scholar
  8. 8.
    Brindley GW, Brown G (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, pp 1–123Google Scholar
  9. 9.
    Bailey SW (1988) Reviews in Mineralogy, Bailey SW. Mineralogical Society of America, Chelsea, MI, pp 675–725Google Scholar
  10. 10.
    Liu MX, Guo BC, Zou QL, Du ML, Jia DM (2008) Nanotechnology 19(20):205709. doi:10.1088/0957-4484/19/20/205709 CrossRefGoogle Scholar
  11. 11.
    Liu MX, Guo BC, Du ML, Cai XJ, Jia DM (2007) Nanotechnology 18(45):455703. doi:10.1088/0957-4484/18/45/455703 CrossRefGoogle Scholar
  12. 12.
    Du ML, Guo BC, Liu MX, Jia DM (2007) Polym Polym Compos 15(4):321–328Google Scholar
  13. 13.
    Du ML, Guo BC, Liu MX, Jia DM (2006) Polym J 38(11):1198–1204. doi:10.1295/polymj.PJ2006038 CrossRefGoogle Scholar
  14. 14.
    Du ML, Guo BC, Jia DM (2006) Eur Polym J 42(6):1362–1369. doi:10.1016/j.eurpolymj.2005.12.006 CrossRefGoogle Scholar
  15. 15.
    Du ML, Guo BC, Cai XJ, Jia ZX, Liu MX, Jia DM (2008) E-polym 18:1–14Google Scholar
  16. 16.
    Bureau MN, Denault J, Cole KC, Bureau MN, Denault J, Cole KC, Enright GD (2002) Polym. Eng Sci 42(9):1897–1906CrossRefGoogle Scholar
  17. 17.
    Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN (2008) Polymer (Guildf) 49(10):2507–2514. doi:10.1016/j.polymer.2008.03.046 CrossRefGoogle Scholar
  18. 18.
    Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer (Guildf) 44(8):2373–2377. doi:10.1016/S0032-3861(03)00073-9 CrossRefGoogle Scholar
  19. 19.
    Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A (2002) Macromoluecules 35(6):2042–2049. doi:10.1021/ma010852z CrossRefGoogle Scholar
  20. 20.
    Zhang QX, Yu ZZ, Xie XL, Mai YW (2004) Polymer (Guildf) 45(17):5985–5994. doi:10.1016/j.polymer.2004.06.044 CrossRefGoogle Scholar
  21. 21.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Bikiaris DN, Karayannidis GP (2005) Thermochim Acta 42(1-2):117–128. doi:10.1016/j.tca.2004.09.001 CrossRefGoogle Scholar
  22. 22.
    Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q (2007) Polymer (Guildf) 48(25):7374–7384. doi:10.1016/j.polymer.2007.10.005 CrossRefGoogle Scholar
  23. 23.
    Brandrup J, Immergut EH (1989) Polymer Handbook, 3rd edn. Chapter V. Wiley, New YorkGoogle Scholar
  24. 24.
    Jeziorny A (1978) Polymer (Guildf) 19:1142–1148. doi:10.1016/0032-3861(78)90060-5 CrossRefGoogle Scholar
  25. 25.
    Ozawa T (1971) Polymer (Guildf) 12(3):150–158. doi:10.1016/0032-3861(71)90041-3 CrossRefGoogle Scholar
  26. 26.
    Yin JH, Mo ZX (2001) Modern Polymer Physics. Science Press, BeijingGoogle Scholar
  27. 27.
    Kissinger HE (1956) J Res Natl Stan 57:17–21Google Scholar
  28. 28.
    Vyazovkin S, Sbirrazzuoli N (2004) Macromol Rapid Commun 25(6):733–738. doi:10.1002/marc.200300295 CrossRefGoogle Scholar
  29. 29.
    Hoffman JD, Davis GT, Lauritzen JI in: Treatise on Solid State Chemistry, NB Hannay Ed, Plenum, New York 1976, Vol. 3, p. 497Google Scholar
  30. 30.
    Xiao WC, Wu PY, Feng JC (2008) J Appl Polym Sci 108:3370–3379. doi:10.1002/app.27997 CrossRefGoogle Scholar
  31. 31.
    Marand H, Xu JN, Srinivas S (2008) Macromolecules 31(23):8219–8229. doi:10.1021/ma980747y CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S, Dollimore D (1996) J Chem Inf Comput Sci 36:42–45. doi:10.1021/ci950062m Google Scholar
  33. 33.
  34. 34.
    Vyazovkin S (2001) J Comput Chem 22:178–183. doi:10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-# CrossRefGoogle Scholar
  35. 35.
    Doyle CD (1962) J Appl Polym Sci 6:639–642. doi:10.1002/app.1962.070062406 CrossRefGoogle Scholar
  36. 36.
    Li J, Zhou CX, Gang W (2003) Polym Test 22(2):217–223. doi:10.1016/S0142-9418(02)00085-5 CrossRefGoogle Scholar
  37. 37.
    Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Macromolecules 34(6):1864–1872. doi:10.1021/ma001122e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mingliang Du
    • 1
    • 2
  • Baochun Guo
    • 2
  • Jingjing Wan
    • 2
  • Quliang Zou
    • 2
  • Demin Jia
    • 2
  1. 1.Faculty of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of Polymer Materials and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations