Journal of Polymer Research

, 16:681 | Cite as

Synthesis of polyamides from p-Xylylene glycol and dinitriles

  • Moslem Mansour LakourajEmail author
  • Masoud Mokhtary
Original Paper


A series of polyamides were prepared by direct polyamidation of the p-Xylylene glycol with various commercially available dinitriles via Ritter reaction. All the synthesized polyamides showed good solubility in amide type solvents such as N-methyl-2-pyrrolidone, N,N-dimethyl acetamide, N,N-dimethyl formamide, and dimethyl sulfoxide. They exhibited inherent viscosities in the range of 0.25–0.62 dl/g. Elemental analysis, differential scanning calorimetry, thermogravimetric analysis, infrared and H1-NMR spectroscopies were used to characterize the polymers. According to the DSC analysis, the glass transition temperatures of the polyamides were found to be 95–174°C. Thermogravimetric analysis indicated that the polymers show the 10% weight loss temperatures in the range of 250–350°C.


Polyamide Dinitrile p-Xylylene glycol Polycondensation Ritter reaction 



We are grateful to Mazandaran University for financial assistance of this work.


  1. 1.
    Lin J, Sherrington DC (1994) Adv Polym Sci 111:177 doi: 10.1007/BFb0024129 CrossRefGoogle Scholar
  2. 2.
    Liu YL, Tsai SH (2002) Polymer (Guildf) 43:5757 doi: 10.1016/S0032-3861(02)00473-1 CrossRefGoogle Scholar
  3. 3.
    Ge Z, Yang S, Tao Z, Liu J, Fan L (2004) Polymer (Guildf) 45:3627 doi: 10.1016/j.polymer.2004.03.037 CrossRefGoogle Scholar
  4. 4.
    Mehdipour SA, Sarrafi Y, Hatami M, Akbarian LF (2005) Eur Polym J 41:491 doi: 10.1016/j.eurpolymj.2004.10.009 CrossRefGoogle Scholar
  5. 5.
    Martin ER, Timothy EL (2003) Synthetic methods in step-growth polymers. Wiley & Sons Inc, Newjerscy, pp 135–158Google Scholar
  6. 6.
    Kricheldorf HR, Boehme S, Schwarz G (2002) Macromolecules 34:8879 doi: 10.1021/ma001838+ CrossRefGoogle Scholar
  7. 7.
    Kricheldorf HR, Richter M, Steinmann A, Schwarz G (2003) Macromol Chem Phys 204:646 doi: 10.1002/macp.200390032 CrossRefGoogle Scholar
  8. 8.
    Ritter JJ, Minieri PP (1948) J Am Chem Soc 70:4045 doi: 10.1021/ja01192a022 CrossRefGoogle Scholar
  9. 9.
    Ramp FL (1965) J Polym Sci Polym Chem 3:1877Google Scholar
  10. 10.
    Ogata N, Saito K (1975) J Polym Sci Polym Chem 13:2763Google Scholar
  11. 11.
    Chang S (1999) Org Process Res Dev 3:232 doi: 10.1021/op980211c CrossRefGoogle Scholar
  12. 12.
    Lakouraj MM, Movassagh B, Fasihi J (2000) Synth Commun 30:821 doi: 10.1080/00397910008087093 CrossRefGoogle Scholar
  13. 13.
    Sakaguchi S, hirbayashi T, Ishii Y (2002) Chem Commun 516Google Scholar
  14. 14.
    Gullickson GC, Lewis DE (2003) Synthesis 5:681Google Scholar
  15. 15.
    Reddy KL (2003) Tetrahedron Lett 44:1453 doi: 10.1016/S0040-4039(03)00006-6 CrossRefGoogle Scholar
  16. 16.
    Vatsouro IM, Shokova EA, Shestakova AK, Chertkov VA, Kovalev VV (2006) Eur J Org Chem 522 doi: 10.1002/ejoc.200500604
  17. 17.
    Dragan D (1995) Iran. Polym J 4:42Google Scholar
  18. 18.
    Camail M, Margaillan A, Thuret S (1998) Vernet JL. Eur Polym J 34:1683 doi: 10.1016/S0014-3057(97)00242-5 CrossRefGoogle Scholar
  19. 19.
    Eren T, Kusefoglu SH (2005) J Appl Polym Sci 97:2264 doi: 10.1002/app.21942 CrossRefGoogle Scholar
  20. 20.
    Yanjarappa MJ, Sivaram S (2004) Macromolecule 37:8499 doi: 10.1021/ma048993z CrossRefGoogle Scholar
  21. 21.
    Gerhard G, Werner K (2001) Adhesives and Adhesive tapes. Wiley-VCH Verlag GmbH, Weinheim, p 13Google Scholar
  22. 22.
    Long TE, Bargrodia S, Moreau A, Duccase V (2000) US Patent 6042908 Accessed 28 March 2000Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Organic-Polymer Chemistry, Faculty of ChemistryMazandaran UniversityBabolsarIran

Personalised recommendations