Advertisement

Journal of Polymer Research

, Volume 16, Issue 5, pp 461–470 | Cite as

Identification of formation stages in a polymeric foam customised by sonication via electrical resistivity measurements

  • C. Torres-Sánchez
  • J. Corney
Article

Abstract

The polymerisation reactions associated with foam formation have distinct stages (i.e. nucleation, growth, packing, stiffening, solidification) some of which are known to be more sensitive to external inputs than others. Consequently, precise detection of the start and end points of each of the polymerisation stages would enable the fine control of material properties such as porosity in solid foams. The development of such process control can only be pursued if those sensitive stages can be clearly distinguished during the manufacture process. This paper reports how an electrical resistivity tracking method was used to assess the differences in the foaming processes when ultrasound was irradiated to polymeric melts undergoing foaming with the aim of tailoring the architecture of the final solid matrix. The electrical resistivity tracking method is also appraised with regard to its suitability to accurately identify the formation stages in the foam.

Keywords

Ultrasonic irradiation Polymerisation stages Electrical resistivity Cavitation 

References

  1. 1.
    Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties. 2nd. ed. Cambridge University PressGoogle Scholar
  2. 2.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. doi: 10.1146/annurev.matsci.29.1.295 CrossRefGoogle Scholar
  3. 3.
    Masselin I, Chasseray X, Durand-Bourlier L, Laine JM, Syzaret PY, Lemordant D (2001) Effect of sonication on polymeric membranes. J Membr Sci 181:213–220. doi: 10.1016/S0376-7388(00)00534-2 CrossRefGoogle Scholar
  4. 4.
    Price GJ, White AJ, Clifton AA (1995) The effect of high-intensity ultrasound on solid polymers. Polymer (Guildf) 36:4919–4925. doi: 10.1016/0032-3861(96)81616-8 CrossRefGoogle Scholar
  5. 5.
    Chen GS, Guo SY, Li HL (2002) Ultrasonic improvement of the compatibility and rheological behavior of high-density polyethylene/polystyrene blends. J Appl Polym Sci 86:23–32. doi: 10.1002/app.10826 CrossRefGoogle Scholar
  6. 6.
    Tonanon N, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2005) Improvement of mesoporosity of carbon cryogels by ultrasonic irradiation. Carbon 43:525–531. doi: 10.1016/j.carbon.2004.10.015 CrossRefGoogle Scholar
  7. 7.
    Chen YZ, Li HL (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97:1553–1560. doi: 10.1002/app.21473 CrossRefGoogle Scholar
  8. 8.
    Lipshitz SD, Macosko CW (1977) Kinetics and energetics of a fast polyurethane cure. J Appl Polym Sci 21:2029–2039. doi: 10.1002/app.1977.070210803 CrossRefGoogle Scholar
  9. 9.
    Vega JR, Gugliotta LM, Meira GR (2002) Emulsion copolymerization of acrylonitrile and butadiene. Semibatch strategies for controlling molecular structure on the basis of calorimetric measurements. Polym Reaction Eng 10:59–82. doi: 10.1081/PRE-120003922 CrossRefGoogle Scholar
  10. 10.
    Wang C, Vickers TJ, Schlenoff JB, Mann CK (1992) Insitu Monitoring of Emulsion Polymerization Using Fiberoptic Raman-Spectroscopy. Appl Spectrosc 46:1729–1731. doi: 10.1366/0003702924926961 CrossRefGoogle Scholar
  11. 11.
    Vieira RAM, Sayer C, Lima EL, Pinto JC (2002) In-line and in situ monitoring of semi-batch emulsion copolymerizations using near-infrared spectroscopy. J Appl Polym Sci 84:2670–2682. doi: 10.1002/app.10434 CrossRefGoogle Scholar
  12. 12.
    Cavin L, Meyer T, Renken A (2000) On-line conversion monitoring through ultrasound velocity measurements in bulk styrene polymerization in a recycle reactor—Part I: experimental validation. Polym Reaction Eng 8:201–223Google Scholar
  13. 13.
    Bur AJ, Roth SC, McBrearty M (2002) In-line dielectric monitoring during extrusion of filled polymers. Rev Sci Instrum 73:2097–2102. doi: 10.1063/1.1470235 CrossRefGoogle Scholar
  14. 14.
    Phianmongkhol A, Varley J (1999) A multi point conductivity measurement system for characterisation of protein foams. Colloids Surf B Biointerfaces 12:247–259. doi: 10.1016/S0927-7765(98)00080-0 CrossRefGoogle Scholar
  15. 15.
    Lemlich R (1978) A theory for the limiting conductivity of polyhedral foam at low density. J Colloid Interface Sci 64:107–110. doi: 10.1016/0021-9797(78)90339-9 CrossRefGoogle Scholar
  16. 16.
    Graillat C, Santos A, Pinto JC, McKenna TF (2004) On-line monitoring of emulsion polymerisation using conductivity measurements. Macromol Symp 206:433–442. doi: 10.1002/masy.200450233 CrossRefGoogle Scholar
  17. 17.
    Vandenbossche L, Dupre L, Melkebeek J (2007) On-line cure monitoring of polyurethane foams by dielectrometric viscosity measurements. Int J Appl Electromagnetics Mech 25:589–593Google Scholar
  18. 18.
    Santos AF, Lima EL, Pinto JC, Graillat C, McKenna T (2003) Online monitoring of the evolution of the number of particles in emulsion polymerization by conductivity measurements. I. Model formulation. J Appl Polym Sci 90:1213–1226. doi: 10.1002/app.12657 Google Scholar
  19. 19.
    Mijovic J, Kenny J, Maffezzoli A, Trivisano A, Bellucci F, Nicolais L (1993) The principles of dielectric measurements for in situ monitoring of composite processing. Compos Sci Technol 49:277–290. doi: 10.1016/0266-3538(93)90109-T CrossRefGoogle Scholar
  20. 20.
    Farben IG Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen (1942) In: Deutsches Reich Reichspatentamt P (ed) Espacenet, EU Intellectual Property Office (Germany)Google Scholar
  21. 21.
    Rojas AJ, Marciano JH, Williams RJ (1982) Rigid polyurethane foams: a model of the foaming process. Polym Eng Sci 22:840–844. doi: 10.1002/pen.760221310 CrossRefGoogle Scholar
  22. 22.
    Marciano JH, Reboredo MM, Rojas AJ, Williams RJJ (1986) Integral-skin polyurethane foams. Polym Eng Sci 26:717–724. doi: 10.1002/pen.760261102 CrossRefGoogle Scholar
  23. 23.
    Gupta VK, Khakhar DV (1999) Formation of integral skin polyurethane foams. Polym Eng Sci 39:164–176. doi: 10.1002/pen.11405 CrossRefGoogle Scholar
  24. 24.
    Modesti M, Adriani V, Simioni F (2000) Chemical and physical blowing agents in structural polyurethane foams: Simulation and characterization. Polym Eng Sci 40:2046–2057. doi: 10.1002/pen.11337 CrossRefGoogle Scholar
  25. 25.
    Zhang XD, Macosko CW, Davis HT, Nikolov AD, Wasan DT (1999) Role of silicone surfactant in flexible polyurethane foam. J Colloid Interface Sci 215:270–279. doi: 10.1006/jcis.1999.6233 CrossRefGoogle Scholar
  26. 26.
    Youn JR, Park H (1999) Bubble growth in reaction injection molded parts foamed by ultrasonic excitation. Polym Eng Sci 39:457–468. doi: 10.1002/pen.11435 CrossRefGoogle Scholar
  27. 27.
    Price GJ, Lenz EJ, Ansell CWG (2002) The effect of high intensity ultrasound on the synthesis of some polyurethanes. Eur Polym J 38:1531–1536. doi: 10.1016/S0014-3057(02)00039-3 CrossRefGoogle Scholar
  28. 28.
    Chen Y, Li H (2006) Effect of ultrasound on the viscoelasticity and rheology of polystyrene extruded through a slit die. J Appl Polym Sci 100:2907–2911. doi: 10.1002/app.20831 CrossRefGoogle Scholar
  29. 29.
    Floros JD, Liang H (1994) Acoustically assisted diffusion through membranes and biomaterials. Food Technol 48:79–84Google Scholar
  30. 30.
    Hu A, Zheng J, Qiu T (2006) Industrial experiments for the application of ultrasound on scale control in the Chinese sugar industry. Ultrason Sonochem 13:329–333Google Scholar
  31. 31.
    Torres-Sánchez C (2008) Generation of heterogeneous cellular structures by sonication, Ph.D. thesis. Heriot-Watt UniversityGoogle Scholar
  32. 32.
    Kim A, Hasan MA, Nahm SH, Cho SS (2005) Evaluation of compressive mechanical properties of Al-foams using electrical conductivity. Compos Struct 71:191–198. doi: 10.1016/j.compstruct.2004.10.016 CrossRefGoogle Scholar
  33. 33.
    Feng Y, Zheng HW, Zhu ZG, Zu FQ (2003) The microstructure and electrical conductivity of aluminum alloy foams. Mater Chem Phys 78:196–201. doi: 10.1016/S0254-0584(02)00334-6 CrossRefGoogle Scholar
  34. 34.
    Chen CL, Lopez E, Makaram P, Selvarasah S, Busnaina A, Jung YJ, Muftu S, Dokmeci MR (2007) Fabrication and evaluation of carbon nanotube-parylene functional composite-films, Transducers ’07 & Eurosensors Xxi, Digest of Technical Papers, Vols 1 and 2: U514-U515Google Scholar
  35. 35.
    Torres-Sánchez C, Corney J (2008) Effects of ultrasound on polymeric foam porosity. Ultrason Sonochem 15:408–415. doi: 10.1016/j.ultsonch.2007.05.002 CrossRefGoogle Scholar
  36. 36.
    Lipshitz SH, Macosko CW (1976) Rheological changes during a urethane network polymerization. Polym Eng Sci 16:803–810. doi: 10.1002/pen.760161205 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.DMEMUniversity of StrathclydeGlasgowUK

Personalised recommendations