Journal of Polymer Research

, Volume 15, Issue 3, pp 205–212 | Cite as

Natural inorganic nanotubes reinforced epoxy resin nanocomposites

  • Mingxian Liu
  • Baochun GuoEmail author
  • Mingliang Du
  • Yanda Lei
  • Demin Jia


Natural occurred nanotubes, halloysite nanotubes, were modified by silane and incorporated into epoxy resin to form nanocomposites. The morphology of the nanocomposites was characterized by transmission electron microscopy (TEM). Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were performed on the nanocomposites. Flexural property and coefficient of thermal expansion (CTE) of the nanocomposites were also determined. Comparing with the neat resin, about 40% increase in storage modulus at glassy state and 133% at rubbery state were achieved by incorporating 12 wt% modified HNTs into the epoxy matrix. In addition, the nanocomposites exhibited improved flexural strength, char yield and dimensional stability. TEM examination revealed a uniform dispersion of the nanotubes in the epoxy resin. The remarkably positive effects of the HNTs on the performance of the epoxy resin were correlated with the unique characteristics of the HNTs, the uniform dispersion and the possible interfacial reactions between the modified HNTs and the matrix.


Halloysite Nanotube Epoxy resin Composite Mechanical property 



This work was financially supported by the National Natural Science Foundation of China with grant number of 50603005.


  1. 1.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511–1575CrossRefGoogle Scholar
  2. 2.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630–645CrossRefGoogle Scholar
  3. 3.
    Rothon RN (1999) Adv Polym Sci 139:67–107CrossRefGoogle Scholar
  4. 4.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624–1652CrossRefGoogle Scholar
  5. 5.
    Andrews R, Weisenberger MC (2004) Curr Opin Solid State Mater Sci 8:31–37CrossRefGoogle Scholar
  6. 6.
    Gorga RE, Cohen RE (2004) J Polym Sci Part B: Polym Phys 42:2690–2702CrossRefGoogle Scholar
  7. 7.
    Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Appl Phys Lett 81:5123–5125CrossRefGoogle Scholar
  8. 8.
    Bai J (2003) Carbon 41:1325–1328CrossRefGoogle Scholar
  9. 9.
    Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89–112CrossRefGoogle Scholar
  10. 10.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205CrossRefGoogle Scholar
  11. 11.
    Wu XW, Ruan JF, Ohsuna T, Terasaki O, Che SN (2007) Chem Mater 19:1577–1583CrossRefGoogle Scholar
  12. 12.
    Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Solid State Commun 136:513–517CrossRefGoogle Scholar
  13. 13.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40:383–426CrossRefGoogle Scholar
  14. 14.
    Du ML, Guo BC, Liu MX, Jia DM (2007) Polym J 39:208–212CrossRefGoogle Scholar
  15. 15.
    Du ML, Guo BC, Jia DM (2006) Eur Polym J 42:1362–1369CrossRefGoogle Scholar
  16. 16.
    He FA, Zhang LM, Zhang F, Chen LS, Wu Q (2006) J Polym Res-Taiwan 13:483–493CrossRefGoogle Scholar
  17. 17.
    Bauer F, Mehnert R (2005) J Polym Res-Taiwan 12:483–491CrossRefGoogle Scholar
  18. 18.
    Liao CS, Ye WB (2003) J Polym Res-Taiwan 10:241–246CrossRefGoogle Scholar
  19. 19.
    Chang CC, Wei KH, Chang YL, Chen WC (2003) J Polym Res-Taiwan 10:1–6CrossRefGoogle Scholar
  20. 20.
    Khabashesku VN, Pulikkathara MX (2006) Mendeleev Commun 2:61–66CrossRefGoogle Scholar
  21. 21.
    Wu HL, Wang CH, Ma CCM, Chiu YC, Chiang MT, Chiang CL (2007) Compos Sci Technol 67:1854–1860CrossRefGoogle Scholar
  22. 22.
    Yuen SM, Ma CCM, Chiang CL, Lin YY, Teng CC (2007) J Polym Sci Part A: Polym Chem 45:3349–3358CrossRefGoogle Scholar
  23. 23.
    Liu JQ, Xiao T, Liao K, Wu P (2007) Nanotechnology 18, Art. No. 165701Google Scholar
  24. 24.
    Yuen SM, Ma CCM, Wu HH, Kuan HC, Chen WJ, Liao SH, Hsu CW, Wu HL (2007) J Appl Polym Sci 103:1272–1278CrossRefGoogle Scholar
  25. 25.
    Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Compos Sci Technol 67:2564–2573CrossRefGoogle Scholar
  26. 26.
    Du ML (2007) Ph.D. Dissertation. South China University of TechnologyGoogle Scholar
  27. 27.
    Zhang YH, Li YQ, Li GT, Huang HT, Chan HLW, Daoud WA, Xin JH, Li LF (2007) Chem Mater 19:1939–1945CrossRefGoogle Scholar
  28. 28.
    Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Small 1:510–513CrossRefGoogle Scholar
  29. 29.
    Miyata T, Endo A, Ohmori T, Akiya T, Nakaiwa M (2003) J Colloid Interface Sci 262:116–125CrossRefGoogle Scholar
  30. 30.
    Meng XY, Wang Z, Tang T (2006) Mater Sci Technol 22:780–786CrossRefGoogle Scholar
  31. 31.
    Mecholsky JJ Jr (2001) Fractography, fracture mechanics and fractal geometry: an integration. In: Varner JR, Frechette VD, Quinn GD (eds) Fractography of glasses and ceramics III, ceramic trans, vol 64, Am Ceram SocGoogle Scholar
  32. 32.
    Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN (2007) J Mater Chem 17:2351–2358CrossRefGoogle Scholar
  33. 33.
    d’Almeida JRM, Monteiro SN, Menezes GW, Rodriguez RJS (2007) J Reinf Plast Compos 26:321–330CrossRefGoogle Scholar
  34. 34.
    Dean K, Krstina J, Tian W, Varley RJ (2007) Macromol Mater Eng 292:415–427CrossRefGoogle Scholar
  35. 35.
    Becker O, Varley R, Simon G (2002) Polymer 43:4365–4373CrossRefGoogle Scholar
  36. 36.
    Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376–3384CrossRefGoogle Scholar
  37. 37.
    Zilg C, Thomann R, Finter J, Mulhaupt R (2000) Macromol Mater Eng 280/281:41–46CrossRefGoogle Scholar
  38. 38.
    Yung KC, Wang J, Yue TM (2006) Adv Compos Mater 15:371–384CrossRefGoogle Scholar
  39. 39.
    Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376–3384CrossRefGoogle Scholar
  40. 40.
    Basara G, Yilmazer U, Bayram G (2005) J Appl Polym Sci 98:1081–1086CrossRefGoogle Scholar
  41. 41.
    Naous W, Yu XY, Zhang QX, Naito K, Kagawa Y (2006) J Polym Sci Part B: Polym Phys 44:1466–1473CrossRefGoogle Scholar
  42. 42.
    Hussain F, Chen JH, Hojjati M (2007) Mater Sci Eng A 445:467–476CrossRefGoogle Scholar
  43. 43.
    Imai T, Sawa F, Nakano T, Ozaki T, Shimizu T, Kozako M, Tanaka T (2006) IEEE T DIELECT EL IN 13:319–326CrossRefGoogle Scholar
  44. 44.
    Yung KC, Wu J, Yue TM, Xie CS (2006) J Compos Mater 40:567–581CrossRefGoogle Scholar
  45. 45.
    Yung KC, Wang J, Yue TM (2006) Adv Compos Mater 15:371–384CrossRefGoogle Scholar
  46. 46.
    Koerner H, Hampton E, Dean D, Turgut Z, Drummy L, Mirau P, Vaia R (2005) Chem Mater 17:1990–1996CrossRefGoogle Scholar
  47. 47.
    Sun YY, Zhang ZQ, Wong CP (2006) IEEE Trans Compon Packag Technol 29:190–197CrossRefGoogle Scholar
  48. 48.
    Liu WC, Varley RJ, Simon GP (2007) Polymer 48:2345–2354CrossRefGoogle Scholar
  49. 49.
    Bellenger V, Fontaine E, Fleishmann A, Saporito J, Verdu J (1984) J Polym Degrad Stab 9:195–208CrossRefGoogle Scholar
  50. 50.
    Liu M, Guo B, Du M, Jia D (2007) Appl Phys A 88:391–395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mingxian Liu
    • 1
  • Baochun Guo
    • 1
    Email author
  • Mingliang Du
    • 1
  • Yanda Lei
    • 1
  • Demin Jia
    • 1
  1. 1.Department of Polymer Materials and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations